Automatic Identification of Informative Code in Stack Overflow Posts

Preetha Chatterjee
{"title":"Automatic Identification of Informative Code in Stack Overflow Posts","authors":"Preetha Chatterjee","doi":"10.1145/3528588.3528656","DOIUrl":null,"url":null,"abstract":"Despite Stack Overflow’s popularity as a resource for solving coding problems, identifying relevant information from an individual post remains a challenge. The overload of information in a post can make it difficult for developers to identify specific and targeted code fixes. In this paper, we aim to help users identify informative code segments, once they have narrowed down their search to a post relevant to their task. Specifically, we explore natural language-based approaches to extract problematic and suggested code pairs from a post. The goal of the study is to investigate the potential of designing a browser extension to draw the readers’ attention to relevant code segments, and thus improve the experience of software engineers seeking help on Stack Overflow.","PeriodicalId":313397,"journal":{"name":"2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3528588.3528656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Despite Stack Overflow’s popularity as a resource for solving coding problems, identifying relevant information from an individual post remains a challenge. The overload of information in a post can make it difficult for developers to identify specific and targeted code fixes. In this paper, we aim to help users identify informative code segments, once they have narrowed down their search to a post relevant to their task. Specifically, we explore natural language-based approaches to extract problematic and suggested code pairs from a post. The goal of the study is to investigate the potential of designing a browser extension to draw the readers’ attention to relevant code segments, and thus improve the experience of software engineers seeking help on Stack Overflow.
堆栈溢出岗位信息码的自动识别
尽管Stack Overflow作为解决编码问题的资源很受欢迎,但从单个帖子中识别相关信息仍然是一个挑战。帖子中的信息过载会使开发人员难以确定特定的和有针对性的代码修复。在本文中,我们旨在帮助用户识别信息代码段,一旦他们将搜索范围缩小到与他们的任务相关的帖子。具体来说,我们探索了基于自然语言的方法来从帖子中提取有问题的和建议的代码对。这项研究的目的是调查设计一个浏览器扩展的潜力,以吸引读者的注意力到相关的代码段,从而改善软件工程师在Stack Overflow上寻求帮助的体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信