On the way to electronic nose

Alexander M. Guliaev, O. B. Sarach, M. Slepneva, A. V. Titov, O. B. Mukhina, Andrey I. Vanin
{"title":"On the way to electronic nose","authors":"Alexander M. Guliaev, O. B. Sarach, M. Slepneva, A. V. Titov, O. B. Mukhina, Andrey I. Vanin","doi":"10.1109/INTERNANO.2009.5335641","DOIUrl":null,"url":null,"abstract":"Two kinds of electronic nose are developed. First one is in the view of matrix of 24 gas sensors on the base of thin films of tin dioxide. The results of modeling are given. The second kind of devise uses the dynamical characteristics of heterogeneous reactions of two sensors. The recognition of reagents based on comparison of reaction of sensors with earlier formed pattern of reactions, obtained by using the correlation coefficient. The perspectives of using the neuron networks for making this analysis is reported.","PeriodicalId":376370,"journal":{"name":"2009 International School and Seminar on Modern Problems of Nanoelectronics, Micro- and Nanosystem Technologies","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International School and Seminar on Modern Problems of Nanoelectronics, Micro- and Nanosystem Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTERNANO.2009.5335641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two kinds of electronic nose are developed. First one is in the view of matrix of 24 gas sensors on the base of thin films of tin dioxide. The results of modeling are given. The second kind of devise uses the dynamical characteristics of heterogeneous reactions of two sensors. The recognition of reagents based on comparison of reaction of sensors with earlier formed pattern of reactions, obtained by using the correlation coefficient. The perspectives of using the neuron networks for making this analysis is reported.
在去电子鼻的路上
研制了两种电子鼻。第一个是基于二氧化锡薄膜的24个气体传感器矩阵的观点。给出了建模结果。第二种是利用两个传感器的非均相反应的动力学特性。对试剂的识别基于传感器的反应与早期形成的反应模式的比较,通过使用相关系数得到。报道了利用神经元网络进行这种分析的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信