Air Temperature Sensor Estimation on Automatic Weather Station Using ARIMA and MLP

Harya Wicaksana, Naufal Ananda, Irvan Budiawan, Bayu Santoso, Roy Handoko, A. Maulana, Suciarti Suciarti, A. Utoro
{"title":"Air Temperature Sensor Estimation on Automatic Weather Station Using ARIMA and MLP","authors":"Harya Wicaksana, Naufal Ananda, Irvan Budiawan, Bayu Santoso, Roy Handoko, A. Maulana, Suciarti Suciarti, A. Utoro","doi":"10.31937/ti.v14i2.2865","DOIUrl":null,"url":null,"abstract":"Surface meteorological quantities are now measured by Automatic Weather Station (AWS). AWS Serang records weather parameters minutely in Banten Province of Indonesia. Air temperature sensor is one instrument of this system. This study aims to design an air temperature sensor estimator model using ARIMA and Artificial Neural Network (ANN) as solution for avoiding loss data. Air temperature sensor on AWS Serang data in August of 2022 period is segmented into training, validating and testing sections. Based on criterion calculation, ARIMA (1,1,5) is simulated. It obtains not more than 0.12 of RMSE,  0.0520C of MAE, 0.193% of MAPE and 0.194% of SMAPE. Meanwhile, three different models of MLP ANN for air temperature estimator is also simulated. Input variables include air temperature, relative humidity and solar radiation intensity. Roy model has highest accuracy level for MLP ANN algorithm with 0.048 of RMSE, 0.0260C for MAE, 5% of MAPE and 4.83% of SMAPE.  Overall, ARIMA (1,1,5) is better than Roy MLP ANN model in estimating air temperature sensor data on AWS Serang. Nonetheless, both models are properly fulfilling WMO (World Meteorological Organization) accuracy requirements for air temperature measurement.","PeriodicalId":347196,"journal":{"name":"Ultimatics : Jurnal Teknik Informatika","volume":" 46","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultimatics : Jurnal Teknik Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31937/ti.v14i2.2865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Surface meteorological quantities are now measured by Automatic Weather Station (AWS). AWS Serang records weather parameters minutely in Banten Province of Indonesia. Air temperature sensor is one instrument of this system. This study aims to design an air temperature sensor estimator model using ARIMA and Artificial Neural Network (ANN) as solution for avoiding loss data. Air temperature sensor on AWS Serang data in August of 2022 period is segmented into training, validating and testing sections. Based on criterion calculation, ARIMA (1,1,5) is simulated. It obtains not more than 0.12 of RMSE,  0.0520C of MAE, 0.193% of MAPE and 0.194% of SMAPE. Meanwhile, three different models of MLP ANN for air temperature estimator is also simulated. Input variables include air temperature, relative humidity and solar radiation intensity. Roy model has highest accuracy level for MLP ANN algorithm with 0.048 of RMSE, 0.0260C for MAE, 5% of MAPE and 4.83% of SMAPE.  Overall, ARIMA (1,1,5) is better than Roy MLP ANN model in estimating air temperature sensor data on AWS Serang. Nonetheless, both models are properly fulfilling WMO (World Meteorological Organization) accuracy requirements for air temperature measurement.
基于ARIMA和MLP的自动气象站气温传感器估计
地面气象量现在由自动气象站(AWS)测量。AWS Serang每分钟记录印度尼西亚万丹省的天气参数。空气温度传感器是该系统的仪表之一。本研究旨在设计一种利用ARIMA和人工神经网络(ANN)作为避免数据丢失的解决方案的空气温度传感器估计模型。在2022年8月期间,AWS Serang的空气温度传感器数据分为培训、验证和测试三个部分。在准则计算的基础上,对ARIMA(1,1,5)进行了仿真。其RMSE不大于0.12,MAE的RMSE不大于0.0520C, MAPE的RMSE不大于0.193%,SMAPE的RMSE不大于0.194%。同时,对三种不同模型的MLP神经网络进行了模拟。输入变量包括空气温度、相对湿度和太阳辐射强度。对于MLP ANN算法,Roy模型的准确率最高,RMSE为0.048,MAE为0.0260,MAPE为5%,SMAPE为4.83%。总体而言,ARIMA(1,1,5)在估计AWS Serang上的空气温度传感器数据方面优于Roy MLP ANN模型。尽管如此,这两种模式都能适当地满足WMO(世界气象组织)对空气温度测量的精度要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信