The Two-Dimensional Tree–Grid Method

Igor Kossaczký, M. Ehrhardt, M. Günther
{"title":"The Two-Dimensional Tree–Grid Method","authors":"Igor Kossaczký, M. Ehrhardt, M. Günther","doi":"10.21314/JCF.2019.373","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel, explicit, wide-stencil, two-dimensional (2D) tree–grid method for solving stochastic control problems (SCPs) with two space dimensions and one time dimension, or, equivalently, the corresponding Hamilton– Jacobi–Bellman equation. This new method can be seen as a generalization of the tree–grid method for SCPs with one space dimension that was recently developed by the authors. The method is unconditionally stable and no 2D interpolation is needed in the stencil construction. We prove the convergence of the method and exemplify it in our application to a two-factor uncertain volatility model.","PeriodicalId":363330,"journal":{"name":"Computation Theory eJournal","volume":" 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation Theory eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/JCF.2019.373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a novel, explicit, wide-stencil, two-dimensional (2D) tree–grid method for solving stochastic control problems (SCPs) with two space dimensions and one time dimension, or, equivalently, the corresponding Hamilton– Jacobi–Bellman equation. This new method can be seen as a generalization of the tree–grid method for SCPs with one space dimension that was recently developed by the authors. The method is unconditionally stable and no 2D interpolation is needed in the stencil construction. We prove the convergence of the method and exemplify it in our application to a two-factor uncertain volatility model.
二维树形网格法
在本文中,我们引入了一种新颖的,显式的,宽模板的,二维(2D)树网格方法来解决具有两个空间维度和一个时间维度的随机控制问题(scp),或者等价地,相应的Hamilton - Jacobi-Bellman方程。这种新方法可以看作是作者最近开发的一维空间scp的树形网格方法的推广。该方法是无条件稳定的,在模板构造过程中不需要进行二维插值。证明了该方法的收敛性,并将其应用于一个双因素不确定波动率模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信