Chandrasekhar adaptive regularizer for adaptive filtering

A. Houacine, G. Demoment
{"title":"Chandrasekhar adaptive regularizer for adaptive filtering","authors":"A. Houacine, G. Demoment","doi":"10.1109/ICASSP.1986.1168766","DOIUrl":null,"url":null,"abstract":"Adaptivity, stability, fast initial convergence, and low complexity are contradictory exigences in adaptive filtering. The least-mean-squares (LMS) algorithms suffer from a slow initial convergence, and the fast recursive least-squares (RLS) ones present numerical stability problems. In this paper we address this last-mentioned problem and perform a regularization of the initial LS problem by using a priori information about the solution and a finite memory. A new, fast, adaptive, recursive algorithm is presented, based on a state-space representation and Chandrasekhar factorizations.","PeriodicalId":242072,"journal":{"name":"ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1986.1168766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Adaptivity, stability, fast initial convergence, and low complexity are contradictory exigences in adaptive filtering. The least-mean-squares (LMS) algorithms suffer from a slow initial convergence, and the fast recursive least-squares (RLS) ones present numerical stability problems. In this paper we address this last-mentioned problem and perform a regularization of the initial LS problem by using a priori information about the solution and a finite memory. A new, fast, adaptive, recursive algorithm is presented, based on a state-space representation and Chandrasekhar factorizations.
用于自适应滤波的Chandrasekhar自适应正则化器
自适应滤波具有自适应性、稳定性、快速初始收敛和低复杂度等特点。最小均二乘(LMS)算法存在初始收敛速度慢的问题,而快速递归最小二乘(RLS)算法存在数值稳定性问题。在本文中,我们解决了最后提到的问题,并通过使用关于解的先验信息和有限内存对初始LS问题进行正则化。提出了一种基于状态空间表示和钱德拉塞卡分解的快速自适应递归算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信