Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor

Jeremy Andre Septian, Tresna Maulana Fachrudin, Aryo Nugroho
{"title":"Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor","authors":"Jeremy Andre Septian, Tresna Maulana Fachrudin, Aryo Nugroho","doi":"10.52985/insyst.v1i1.36","DOIUrl":null,"url":null,"abstract":"Persepakbolaan Indonesia belakangan ini memiliki banyak polemik mulai dari kasus pengaturan skor, pergantian pelatih timnas senior hingga pergantian ketua umum Persatuan Sepak bola Seluruh Indonesia (PSSI). Polemik ini menimbulkan banyaknya opini maupun pendapat dari pengguna twitter terhadap persepakbolaan di Indonesia sehingga diperlukan sebuah sistem untuk memudahkan dalam mengetahui sentimen pada setiap kalimat. Tujuan dari penelitian ini adalah untuk menganalisis sentimen pada setiap kalimat dari pengguna twitter terhadap persepakbolaan Indonesia apakah memiliki sentimen negatif atau positif. Data yang digunakan dalam penelitian ini didapatkan dari hasil crawling dari media sosial twitter terkait persepakbolaan di Indonesia yang diambil dari akun twitter resmi PSSI. Setelah data dikumpulkan kemudian akan dilakukan beberapa tahapan yaitu preprocessing yang terdiri dari cleansing, tokenizing, stopword removal, dan stemming.  Pembobotan kata menggunakan Term Frequency-Invers Document Frequency (TF-IDF). Pada tahap validasi data dilakukan pengujian silang sebanyak 10 kali menggunakan k-fold cross validation, kemudian diklasifikasikan dengan metode K-Nearest Neighbor dapat menghasilkan akurasi yang cukup baik. Dari 2000 data tweet berbahasa indonesia didapatkan hasil akurasi optimal pada nilai k=23 sebanyak 79.9%","PeriodicalId":183705,"journal":{"name":"Journal of Intelligent System and Computation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent System and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52985/insyst.v1i1.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Persepakbolaan Indonesia belakangan ini memiliki banyak polemik mulai dari kasus pengaturan skor, pergantian pelatih timnas senior hingga pergantian ketua umum Persatuan Sepak bola Seluruh Indonesia (PSSI). Polemik ini menimbulkan banyaknya opini maupun pendapat dari pengguna twitter terhadap persepakbolaan di Indonesia sehingga diperlukan sebuah sistem untuk memudahkan dalam mengetahui sentimen pada setiap kalimat. Tujuan dari penelitian ini adalah untuk menganalisis sentimen pada setiap kalimat dari pengguna twitter terhadap persepakbolaan Indonesia apakah memiliki sentimen negatif atau positif. Data yang digunakan dalam penelitian ini didapatkan dari hasil crawling dari media sosial twitter terkait persepakbolaan di Indonesia yang diambil dari akun twitter resmi PSSI. Setelah data dikumpulkan kemudian akan dilakukan beberapa tahapan yaitu preprocessing yang terdiri dari cleansing, tokenizing, stopword removal, dan stemming.  Pembobotan kata menggunakan Term Frequency-Invers Document Frequency (TF-IDF). Pada tahap validasi data dilakukan pengujian silang sebanyak 10 kali menggunakan k-fold cross validation, kemudian diklasifikasikan dengan metode K-Nearest Neighbor dapat menghasilkan akurasi yang cukup baik. Dari 2000 data tweet berbahasa indonesia didapatkan hasil akurasi optimal pada nilai k=23 sebanyak 79.9%
最近,印尼足球联盟(PSSI)的案件有很多关于得分安排、高级教练timnas(教练)的报道。这篇文章引发了twitter用户对印尼协议的大量意见和意见,因此需要一种系统来帮助他们了解每个句子的情绪。本研究的目的是分析twitter用户关于印尼是否有消极或积极情绪的每句话上的情绪。在本研究中使用的数据来自印尼官方twitter社交媒体PSSI的跟踪。然后,在收集了数据之后,将进行几个步骤的预先处理,包括清洁、密封、消去和盖章。拼写错误使用Term频率- invers文档频率(TF-IDF)。在验证数据的阶段,使用k-fold交叉验证10次,然后对邻近的K-Nearest方法进行分类,可以产生相当准确的准确性。在2000条印尼推特数据中,获得了高达79.9%的k=23的最佳点击量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信