Effective Interest Region Estimation Model to Represent Corners for Image

Naurin Afrin, Wei Lai
{"title":"Effective Interest Region Estimation Model to Represent Corners for Image","authors":"Naurin Afrin, Wei Lai","doi":"10.5121/sipij.2018.9603","DOIUrl":null,"url":null,"abstract":"One of the most important steps to describe local features is to estimate the interest region around the feature location to achieve the invariance against different image transformation. The pixels inside the interest region are used to build the descriptor, to represent a feature. Estimating the interest region around a corner location is a fundamental step to describe the corner feature. But the process is challenging under different image conditions. Most of the corner detectors derive appropriate scales to estimate the region to build descriptors. In our approach, we have proposed a new local maxima-based interest region detection method. This region estimation method can be used to build descriptors to represent corners. We have performed a comparative analysis to match the feature points using recent corner detectors and the result shows that our method achieves better precision and recall results than existing methods.","PeriodicalId":406666,"journal":{"name":"Applied Computing eJournal","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/sipij.2018.9603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most important steps to describe local features is to estimate the interest region around the feature location to achieve the invariance against different image transformation. The pixels inside the interest region are used to build the descriptor, to represent a feature. Estimating the interest region around a corner location is a fundamental step to describe the corner feature. But the process is challenging under different image conditions. Most of the corner detectors derive appropriate scales to estimate the region to build descriptors. In our approach, we have proposed a new local maxima-based interest region detection method. This region estimation method can be used to build descriptors to represent corners. We have performed a comparative analysis to match the feature points using recent corner detectors and the result shows that our method achieves better precision and recall results than existing methods.
图像角点表示的有效兴趣区域估计模型
局部特征描述最重要的步骤之一是估计特征位置周围的兴趣区域,以实现对不同图像变换的不变性。感兴趣区域内的像素用于构建描述符,以表示特征。估计拐角位置周围的兴趣区域是描述拐角特征的基本步骤。但在不同的图像条件下,这一过程具有挑战性。大多数角点检测器都推导出适当的尺度来估计区域以构建描述子。在我们的方法中,我们提出了一种新的基于局部极大值的兴趣区域检测方法。这种区域估计方法可以用来建立描述符来表示角点。对比分析了目前常用的角点检测器对特征点的匹配,结果表明该方法比现有方法具有更好的查全率和查全率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信