Performance Evaluation of Thermoelectric Cooling with Two Difference Fluids Medium

BowoYuli Prasetyo
{"title":"Performance Evaluation of Thermoelectric Cooling with Two Difference Fluids Medium","authors":"BowoYuli Prasetyo","doi":"10.35313/ijatr.v3i1.74","DOIUrl":null,"url":null,"abstract":"Thermoelectric has been used in various applications related to cooling systems (TEC). Most researchers focused on expanding the application of TEC and improving heat transfer. The improvement of the heat transfer relied on the configuration, heat exchanger, and fluid medium. However, no previous work has reported the influence of air and water as the fluid’s medium on the TEC performance. Therefore, in this study, the performance of TEC with water and air as working fluids is evaluated experimentally. Besides, several input parameters are controlled to evaluate the TEC performance under different conditions. The results reveal that the variation of working fluid and input parameters influenced the overall TEC output. The increment of TEC cooling capacity is proportional to the input power, mass flow rate, and inlet temperature of the working fluid. While the input power and inlet temperature also vary the heat exchanger thermal resistance. The overall thermal resistance of the water block is averagely ten times lower than that of the heat sink, therefore, the water block is significantly better compared to the heat sink. While the highest COP obtained from the water and air system is 1.72 and 1.41, respectively.","PeriodicalId":382187,"journal":{"name":"Current Journal: International Journal Applied Technology Research","volume":"156 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Journal: International Journal Applied Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35313/ijatr.v3i1.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoelectric has been used in various applications related to cooling systems (TEC). Most researchers focused on expanding the application of TEC and improving heat transfer. The improvement of the heat transfer relied on the configuration, heat exchanger, and fluid medium. However, no previous work has reported the influence of air and water as the fluid’s medium on the TEC performance. Therefore, in this study, the performance of TEC with water and air as working fluids is evaluated experimentally. Besides, several input parameters are controlled to evaluate the TEC performance under different conditions. The results reveal that the variation of working fluid and input parameters influenced the overall TEC output. The increment of TEC cooling capacity is proportional to the input power, mass flow rate, and inlet temperature of the working fluid. While the input power and inlet temperature also vary the heat exchanger thermal resistance. The overall thermal resistance of the water block is averagely ten times lower than that of the heat sink, therefore, the water block is significantly better compared to the heat sink. While the highest COP obtained from the water and air system is 1.72 and 1.41, respectively.
两差流体介质热电冷却性能评价
热电已用于与冷却系统(TEC)相关的各种应用中。目前的研究主要集中在扩大TEC的应用和改善传热方面。传热性能的提高主要依赖于结构、换热器和流体介质。然而,以前的工作没有报道空气和水作为流体介质对TEC性能的影响。因此,在本研究中,以水和空气为工质对TEC的性能进行了实验评价。此外,还控制了几个输入参数,以评估不同条件下TEC的性能。结果表明,工作流体和输入参数的变化影响了整体TEC输出。TEC制冷量的增量与输入功率、质量流量和工作流体入口温度成正比。而输入功率和进口温度也会改变换热器的热阻。水块的整体热阻平均比散热器低十倍,因此,水块明显优于散热器。而水系统和空气系统的COP最高分别为1.72和1.41。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信