Protein Interaction Prediction by Integrating Genomic Features and Protein Interaction Network Analysis

L. Lu, Yu Xia, Haiyuan Yu, Alexander Rives, Haoxin Lu, Falk Schubert, M. Gerstein
{"title":"Protein Interaction Prediction by Integrating Genomic Features and Protein Interaction Network Analysis","authors":"L. Lu, Yu Xia, Haiyuan Yu, Alexander Rives, Haoxin Lu, Falk Schubert, M. Gerstein","doi":"10.1002/0470094419.CH5","DOIUrl":null,"url":null,"abstract":"The recent explosion of genomic-scale protein interaction screens has made it possible to study protein interactions on a level of interactome and networks. In this chapter, we begin with an introduction of a novel approach that probabilistically combines multiple information sources to predict protein interactions in yeast. Specifically, Section 5.2 describes the sources of genomic features. Section 5.3 provides a basic tutorial on machine-learning approaches and","PeriodicalId":268206,"journal":{"name":"Data Analysis and Visualization in Genomics and Proteomics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Analysis and Visualization in Genomics and Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/0470094419.CH5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The recent explosion of genomic-scale protein interaction screens has made it possible to study protein interactions on a level of interactome and networks. In this chapter, we begin with an introduction of a novel approach that probabilistically combines multiple information sources to predict protein interactions in yeast. Specifically, Section 5.2 describes the sources of genomic features. Section 5.3 provides a basic tutorial on machine-learning approaches and
整合基因组特征和蛋白质相互作用网络分析的蛋白质相互作用预测
最近基因组尺度的蛋白质相互作用屏幕的爆炸使得在相互作用组和网络的水平上研究蛋白质相互作用成为可能。在本章中,我们首先介绍了一种新的方法,即概率地结合多个信息源来预测酵母中的蛋白质相互作用。具体来说,第5.2节描述了基因组特征的来源。第5.3节提供了关于机器学习方法和的基本教程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信