{"title":"Does Deception Leave a Content Independent Stylistic Trace?","authors":"Victor Zeng, Xuting Liu, Rakesh M. Verma","doi":"10.1145/3508398.3519358","DOIUrl":null,"url":null,"abstract":"A recent survey claims that there are \\em no general linguistic cues for deception. Since Internet societies are plagued with deceptive attacks such as phishing and fake news, this claim means that we must build individual datasets and detectors for each kind of attack. It also implies that when a new scam (e.g., Covid) arrives, we must start the whole process of data collection, annotation, and model building from scratch. In this paper, we put this claim to the test by building a quality domain-independent deception dataset and investigating whether a model can perform well on more than one form of deception.","PeriodicalId":102306,"journal":{"name":"Proceedings of the Twelfth ACM Conference on Data and Application Security and Privacy","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508398.3519358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A recent survey claims that there are \em no general linguistic cues for deception. Since Internet societies are plagued with deceptive attacks such as phishing and fake news, this claim means that we must build individual datasets and detectors for each kind of attack. It also implies that when a new scam (e.g., Covid) arrives, we must start the whole process of data collection, annotation, and model building from scratch. In this paper, we put this claim to the test by building a quality domain-independent deception dataset and investigating whether a model can perform well on more than one form of deception.