On the numerical solution of Helmholtz-type PDEs using an adaptive complex collocation technique

P. A. Dinopoulos, E. G. Grylonakis, C. Filelis-Papadopoulos, G. Gravvanis
{"title":"On the numerical solution of Helmholtz-type PDEs using an adaptive complex collocation technique","authors":"P. A. Dinopoulos, E. G. Grylonakis, C. Filelis-Papadopoulos, G. Gravvanis","doi":"10.1145/3139367.3139394","DOIUrl":null,"url":null,"abstract":"In this paper1 we consider the numerical solution of Helmholtz-type Partial Differential Equations in convex polygons, using a numerical technique based on the unified transform method. The key step of this approach is the utilization of the so-called global relation, which is an equation that couples the integral transforms of the given and the unknown boundary data, characterizing a Dirichlet-to-Neumann map. Solving the global relation in the complex k-plane, results in the determination of the missing boundary values, given a computational domain and prescribed boundary conditions. The considered numerical technique depends on the partitioning of the computational domain into a predetermined number of concentric polygons where the solution is required. Starting from the boundaries and proceeding towards the center of the domain, a spatial-marching procedure is used in order to compute the solution at each concentric polygon, using the Dirichlet and Neumann values computed via the global relations. The global relations are solved numerically using a collocation method in the complex k-plane, adapting the k-parameter at each spatial level. Numerical results indicating the applicability of the proposed method are provided, along with discussions concerning the implementation details.","PeriodicalId":436862,"journal":{"name":"Proceedings of the 21st Pan-Hellenic Conference on Informatics","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st Pan-Hellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139367.3139394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper1 we consider the numerical solution of Helmholtz-type Partial Differential Equations in convex polygons, using a numerical technique based on the unified transform method. The key step of this approach is the utilization of the so-called global relation, which is an equation that couples the integral transforms of the given and the unknown boundary data, characterizing a Dirichlet-to-Neumann map. Solving the global relation in the complex k-plane, results in the determination of the missing boundary values, given a computational domain and prescribed boundary conditions. The considered numerical technique depends on the partitioning of the computational domain into a predetermined number of concentric polygons where the solution is required. Starting from the boundaries and proceeding towards the center of the domain, a spatial-marching procedure is used in order to compute the solution at each concentric polygon, using the Dirichlet and Neumann values computed via the global relations. The global relations are solved numerically using a collocation method in the complex k-plane, adapting the k-parameter at each spatial level. Numerical results indicating the applicability of the proposed method are provided, along with discussions concerning the implementation details.
基于自适应复配技术的亥姆霍兹型偏微分方程数值解
本文采用基于统一变换方法的数值方法,研究凸多边形上helmholtz型偏微分方程的数值解。这种方法的关键步骤是利用所谓的全局关系,这是一个方程,它耦合了给定和未知边界数据的积分变换,表征了狄利克雷-诺伊曼映射。在给定计算域和规定的边界条件下,求解复k平面上的全局关系,可以确定缺失的边界值。所考虑的数值技术依赖于将计算域划分为需要解的预定数量的同心多边形。从边界开始,向区域中心推进,利用全局关系计算的狄利克雷值和诺伊曼值,使用空间推进过程计算每个同心多边形的解。在复k平面上采用配置方法对全局关系进行数值求解,在每个空间层次上采用k参数。给出了数值结果,说明了所提方法的适用性,并对实施细节进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信