Stochastic model of diphone-like segments based on trajectory concepts

P. Marteau, G. Bailly, M. T. Janot-Giorgetti
{"title":"Stochastic model of diphone-like segments based on trajectory concepts","authors":"P. Marteau, G. Bailly, M. T. Janot-Giorgetti","doi":"10.1109/ICASSP.1988.196660","DOIUrl":null,"url":null,"abstract":"A new global approach to coarse classification of speech segments is presented. Markov modeling is applied on an analytic approach to coarticulation. Speech signal evolution of diphone-like segments is modelized by a point moving frame by frame in a factorial space. Kinematic segmentation applied to the trajectory covered by this point enables the authors to build stochastic models of these segments. Input parameters of a Markov model are extracted from a skeleton of this trajectory considered as a functional model of overlapping segments. The evaluation of such representations in a recognition task gives some elements of discussion about the relative information contained in steady states versus transient segments and acoustical trajectories in general.<<ETX>>","PeriodicalId":448544,"journal":{"name":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1988.196660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A new global approach to coarse classification of speech segments is presented. Markov modeling is applied on an analytic approach to coarticulation. Speech signal evolution of diphone-like segments is modelized by a point moving frame by frame in a factorial space. Kinematic segmentation applied to the trajectory covered by this point enables the authors to build stochastic models of these segments. Input parameters of a Markov model are extracted from a skeleton of this trajectory considered as a functional model of overlapping segments. The evaluation of such representations in a recognition task gives some elements of discussion about the relative information contained in steady states versus transient segments and acoustical trajectories in general.<>
基于轨迹概念的圆盘状线段随机模型
提出了一种新的全局语音片段粗分类方法。马尔可夫模型应用于协发音的解析方法。在阶乘空间中,用逐帧移动的点来建模类diphone片段的语音信号演化。运动学分割应用于这一点所覆盖的轨迹,使作者能够建立这些段的随机模型。马尔可夫模型的输入参数是从该轨迹的骨架中提取的,该骨架被认为是重叠段的功能模型。在识别任务中对这种表示的评估给出了关于稳定状态与瞬态段和声学轨迹中包含的相对信息的讨论的一些元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信