Mapping Pipelined Divided-difference Computations into Hypercubes

K. Chung, Yu-Wei Chen
{"title":"Mapping Pipelined Divided-difference Computations into Hypercubes","authors":"K. Chung, Yu-Wei Chen","doi":"10.1142/S012905339700012X","DOIUrl":null,"url":null,"abstract":"In numerical computations, the method of divided differences is a very important technique for polynomial approximations. Consider a pipelined divided–difference computation for approximating an nth degree polynomial. This paper first presents a method to transform the computational structure of divided differences into the pyramid tree with nodes. Based on graph embedding technique, without any extra communication delay, the pipelined divided–difference computation can be performed in a (2k + 1)-dimensional fault–free hypercube for n + 1 = 2k + t, k > 0, and 0 < t < 2k; the pipelined divided-difference computation can be further performed in a (2k + 2)-dimensional faulty hypercube to tolerate arbitrary (k - 1) faulty nodes/links. To the best of our knowledge, this is the first time such mapping methods are being proposed in the literature.","PeriodicalId":270006,"journal":{"name":"Int. J. High Speed Comput.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. High Speed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S012905339700012X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In numerical computations, the method of divided differences is a very important technique for polynomial approximations. Consider a pipelined divided–difference computation for approximating an nth degree polynomial. This paper first presents a method to transform the computational structure of divided differences into the pyramid tree with nodes. Based on graph embedding technique, without any extra communication delay, the pipelined divided–difference computation can be performed in a (2k + 1)-dimensional fault–free hypercube for n + 1 = 2k + t, k > 0, and 0 < t < 2k; the pipelined divided-difference computation can be further performed in a (2k + 2)-dimensional faulty hypercube to tolerate arbitrary (k - 1) faulty nodes/links. To the best of our knowledge, this is the first time such mapping methods are being proposed in the literature.
将管道差分计算映射到超立方体
在数值计算中,差除法是一种非常重要的多项式逼近方法。考虑一个近似n次多项式的管道差分计算。本文首先提出了一种将可分差计算结构转化为有节点金字塔树的方法。基于图嵌入技术,在不增加通信延迟的情况下,实现了n + 1 = 2k + t、k > 0、0 < t < 2k的(2k + 1)维无故障超立方体的管道差分计算;可以在(2k + 2)维故障超立方体中进一步执行管道差分计算,以容忍任意(k - 1)个故障节点/链路。据我们所知,这是第一次在文献中提出这样的映射方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信