Accelerating Distributed Deep Learning using Multi-Path RDMA in Data Center Networks

Feng Tian, Yang Zhang, Wei Ye, Cheng Jin, Ziyan Wu, Zhi-Li Zhang
{"title":"Accelerating Distributed Deep Learning using Multi-Path RDMA in Data Center Networks","authors":"Feng Tian, Yang Zhang, Wei Ye, Cheng Jin, Ziyan Wu, Zhi-Li Zhang","doi":"10.1145/3482898.3483363","DOIUrl":null,"url":null,"abstract":"Data center networks (DCNs) have widely deployed RDMA to support data-intensive applications such as machine learning. While DCNs are designed with rich multi-path topology, current RDMA (hardware) technology does not support multi-path transport. In this paper we advance Maestro- a purely software-basedmulti-path RDMA solution - to effectively utilize the rich multi-path topology for load balancing and reliability. As a \"middleware\" operating at the user-space, Maestro is modulaR@and software-defined:Maestro decouples path selection and load balancing mechanisms from hardware features, and allows DCN operators and applications to make flexible decisions by employing the best mechanisms as needed. As such, Maestro can be readily deployed using existing RDMA hardware (NICs) to support distributed deep learning (DDL) applications. Our experiments show that Maestro is capable of fully utilizing multiple paths with negligible CPU overheads, thereby enhancing the performance of DDL applications.","PeriodicalId":161157,"journal":{"name":"Proceedings of the ACM SIGCOMM Symposium on SDN Research (SOSR)","volume":"34 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGCOMM Symposium on SDN Research (SOSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3482898.3483363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Data center networks (DCNs) have widely deployed RDMA to support data-intensive applications such as machine learning. While DCNs are designed with rich multi-path topology, current RDMA (hardware) technology does not support multi-path transport. In this paper we advance Maestro- a purely software-basedmulti-path RDMA solution - to effectively utilize the rich multi-path topology for load balancing and reliability. As a "middleware" operating at the user-space, Maestro is modulaR@and software-defined:Maestro decouples path selection and load balancing mechanisms from hardware features, and allows DCN operators and applications to make flexible decisions by employing the best mechanisms as needed. As such, Maestro can be readily deployed using existing RDMA hardware (NICs) to support distributed deep learning (DDL) applications. Our experiments show that Maestro is capable of fully utilizing multiple paths with negligible CPU overheads, thereby enhancing the performance of DDL applications.
在数据中心网络中使用多路径RDMA加速分布式深度学习
数据中心网络(dcn)已广泛部署RDMA,以支持机器学习等数据密集型应用。dcn具有丰富的多路径拓扑结构,但目前的RDMA(硬件)技术不支持多路径传输。在本文中,我们提出了Maestro-一个纯粹基于软件的多路径RDMA解决方案-有效地利用丰富的多路径拓扑来实现负载平衡和可靠性。作为在用户空间运行的“中间件”,Maestro是modulaR@and软件定义的:Maestro将路径选择和负载平衡机制与硬件功能解耦,并允许DCN运营商和应用程序根据需要采用最佳机制来做出灵活的决策。因此,Maestro可以使用现有的RDMA硬件(网卡)轻松部署,以支持分布式深度学习(DDL)应用程序。我们的实验表明,Maestro能够充分利用多条路径,而CPU开销可以忽略不计,从而提高了DDL应用程序的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信