Differencing data streams

S. Chawathe
{"title":"Differencing data streams","authors":"S. Chawathe","doi":"10.1109/IDEAS.2005.21","DOIUrl":null,"url":null,"abstract":"We present external-memory algorithms for differencing large hierarchical datasets. Our methods are especially suited to streaming data with bounded differences. For input sizes m and n and maximum output (difference) size e, the I/O, RAM, and CPU costs of our algorithm rdiff are, respectively, m + n, 4e + 8, and O(MN). That is, given 4e + 8 blocks of RAM, our algorithm performs no I/O operations other than those required to read both inputs. We also present a variant of the algorithm that uses only four blocks of RAM, with I/O cost 8me + 18m + n + 6e + 5 and CPU cost O(MN).","PeriodicalId":357591,"journal":{"name":"9th International Database Engineering & Application Symposium (IDEAS'05)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Database Engineering & Application Symposium (IDEAS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDEAS.2005.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present external-memory algorithms for differencing large hierarchical datasets. Our methods are especially suited to streaming data with bounded differences. For input sizes m and n and maximum output (difference) size e, the I/O, RAM, and CPU costs of our algorithm rdiff are, respectively, m + n, 4e + 8, and O(MN). That is, given 4e + 8 blocks of RAM, our algorithm performs no I/O operations other than those required to read both inputs. We also present a variant of the algorithm that uses only four blocks of RAM, with I/O cost 8me + 18m + n + 6e + 5 and CPU cost O(MN).
不同的数据流
我们提出了用于区分大型分层数据集的外部存储器算法。我们的方法特别适合具有有限差异的流数据。对于输入大小m和n以及最大输出(差异)大小e,我们的算法rdiff的I/O、RAM和CPU成本分别为m + n、4e + 8和O(MN)。也就是说,给定4e + 8块RAM,我们的算法除了读取两个输入所需的操作外,不执行任何I/O操作。我们还提出了该算法的一种变体,它只使用4块RAM, I/O成本为8me + 18m + n + 6e + 5, CPU成本为O(MN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信