The butterfly effect in the price of agricultural products: A multidimensional spatial-temporal association mining

Yan Guo, Xiaonan Hu, Zepeng Wang, Wei Tang, Deyu Liu, Yunzhong Luo, Hongxiang Xu
{"title":"The butterfly effect in the price of agricultural products: A multidimensional spatial-temporal association mining","authors":"Yan Guo, Xiaonan Hu, Zepeng Wang, Wei Tang, Deyu Liu, Yunzhong Luo, Hongxiang Xu","doi":"10.17221/128/2021-agricecon","DOIUrl":null,"url":null,"abstract":"With the advent of the era of big data, data mining methods show their powerful information mining ability in various fields, seeking the association information hidden in the data, which is convenient for people to make scientific decisions. This paper analyses the butterfly effect in the agricultural product industry chain from the perspective of producer and consumer by using multidimensional time and space theory and proposes a new price forecasting method. We consider that the price change of agricultural products is not only affected by the balance of market supply and demand but also by the factors of time and space. Taking the pig industry chain of Sichuan Province as an example, this paper explores and excavates the data from 2010 to 2020 in the time dimension. Interestingly, we found that the price changes in pork in the market are generally highly correlated with the prices of slaughtered pigs, piglets a few weeks ago and the prices of multiple feed a few months ago. Based on the precise time-space factors, we improved the price forecasting model, greatly improved the accuracy of price prediction, and proved the effectiveness of multidimensional spatiotemporal association mining. The research in this paper is helpful to establish a brand-new agricultural product price prediction theory, which is of great significance to the development of the agricultural economy and global poverty alleviation.","PeriodicalId":283940,"journal":{"name":"Agricultural Economics (Zemědělská ekonomika)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Economics (Zemědělská ekonomika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/128/2021-agricecon","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the advent of the era of big data, data mining methods show their powerful information mining ability in various fields, seeking the association information hidden in the data, which is convenient for people to make scientific decisions. This paper analyses the butterfly effect in the agricultural product industry chain from the perspective of producer and consumer by using multidimensional time and space theory and proposes a new price forecasting method. We consider that the price change of agricultural products is not only affected by the balance of market supply and demand but also by the factors of time and space. Taking the pig industry chain of Sichuan Province as an example, this paper explores and excavates the data from 2010 to 2020 in the time dimension. Interestingly, we found that the price changes in pork in the market are generally highly correlated with the prices of slaughtered pigs, piglets a few weeks ago and the prices of multiple feed a few months ago. Based on the precise time-space factors, we improved the price forecasting model, greatly improved the accuracy of price prediction, and proved the effectiveness of multidimensional spatiotemporal association mining. The research in this paper is helpful to establish a brand-new agricultural product price prediction theory, which is of great significance to the development of the agricultural economy and global poverty alleviation.
农产品价格的蝴蝶效应:一个多维时空关联挖掘
随着大数据时代的到来,数据挖掘方法在各个领域显示出强大的信息挖掘能力,寻找隐藏在数据中的关联信息,方便人们做出科学决策。本文运用多维时空理论,从生产者和消费者的角度对农产品产业链中的蝴蝶效应进行了分析,提出了一种新的价格预测方法。我们认为农产品价格的变化不仅受到市场供求平衡的影响,还受到时间和空间因素的影响。本文以四川省生猪产业链为例,在时间维度上对2010 - 2020年的数据进行了探索和挖掘。有趣的是,我们发现市场上猪肉的价格变化通常与几周前的屠宰猪、仔猪价格和几个月前的复合饲料价格高度相关。基于精确的时空因子,改进了价格预测模型,大大提高了价格预测的精度,证明了多维时空关联挖掘的有效性。本文的研究有助于建立一种全新的农产品价格预测理论,对农业经济的发展和全球扶贫具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信