Frequent Pattern Mining using Bipartite Graph

D. Chai, Long Jin, B. Hwang, K. Ryu
{"title":"Frequent Pattern Mining using Bipartite Graph","authors":"D. Chai, Long Jin, B. Hwang, K. Ryu","doi":"10.1109/DEXA.2007.110","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient ALIB algorithm that can find frequent patterns by only onetime database scan. Frequent patterns are found without generation of candidate sets using LIB-graph. LIB-graph is generated simultaneously when the database is scanned for 1-frequent items generation. LIB-graph represents the relation between 1-frequent items and transactions including the 1-frequent items. That is, LIB-graph compresses database information into a much smaller data structure. We can quickly find frequent patterns because the proposed method conducts only onetime database scan and avoids the generation of candidate sets. Our performance study shows that the ALIB algorithm is efficient for mining frequent patterns, and is faster than the FP-growth.","PeriodicalId":314834,"journal":{"name":"18th International Workshop on Database and Expert Systems Applications (DEXA 2007)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Workshop on Database and Expert Systems Applications (DEXA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2007.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, we propose an efficient ALIB algorithm that can find frequent patterns by only onetime database scan. Frequent patterns are found without generation of candidate sets using LIB-graph. LIB-graph is generated simultaneously when the database is scanned for 1-frequent items generation. LIB-graph represents the relation between 1-frequent items and transactions including the 1-frequent items. That is, LIB-graph compresses database information into a much smaller data structure. We can quickly find frequent patterns because the proposed method conducts only onetime database scan and avoids the generation of candidate sets. Our performance study shows that the ALIB algorithm is efficient for mining frequent patterns, and is faster than the FP-growth.
基于二部图的频繁模式挖掘
本文提出了一种高效的ALIB算法,只需对数据库进行一次扫描即可发现频繁模式。使用LIB-graph在不生成候选集的情况下发现频繁模式。LIB-graph在扫描数据库以生成1-频繁项时同时生成。lib图表示1-频繁项与包含1-频繁项的事务之间的关系。也就是说,LIB-graph将数据库信息压缩成更小的数据结构。由于该方法只进行一次数据库扫描,避免了候选集的生成,可以快速发现频繁模式。我们的性能研究表明,ALIB算法对于挖掘频繁模式是有效的,并且比fp增长更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信