{"title":"Frequent Pattern Mining using Bipartite Graph","authors":"D. Chai, Long Jin, B. Hwang, K. Ryu","doi":"10.1109/DEXA.2007.110","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient ALIB algorithm that can find frequent patterns by only onetime database scan. Frequent patterns are found without generation of candidate sets using LIB-graph. LIB-graph is generated simultaneously when the database is scanned for 1-frequent items generation. LIB-graph represents the relation between 1-frequent items and transactions including the 1-frequent items. That is, LIB-graph compresses database information into a much smaller data structure. We can quickly find frequent patterns because the proposed method conducts only onetime database scan and avoids the generation of candidate sets. Our performance study shows that the ALIB algorithm is efficient for mining frequent patterns, and is faster than the FP-growth.","PeriodicalId":314834,"journal":{"name":"18th International Workshop on Database and Expert Systems Applications (DEXA 2007)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Workshop on Database and Expert Systems Applications (DEXA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2007.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
In this paper, we propose an efficient ALIB algorithm that can find frequent patterns by only onetime database scan. Frequent patterns are found without generation of candidate sets using LIB-graph. LIB-graph is generated simultaneously when the database is scanned for 1-frequent items generation. LIB-graph represents the relation between 1-frequent items and transactions including the 1-frequent items. That is, LIB-graph compresses database information into a much smaller data structure. We can quickly find frequent patterns because the proposed method conducts only onetime database scan and avoids the generation of candidate sets. Our performance study shows that the ALIB algorithm is efficient for mining frequent patterns, and is faster than the FP-growth.