Fusion of Depth and Thermal Imaging for People Detection

Weronika Gutfeter, A. Pacut
{"title":"Fusion of Depth and Thermal Imaging for People Detection","authors":"Weronika Gutfeter, A. Pacut","doi":"10.26636/jtit.2021.155521","DOIUrl":null,"url":null,"abstract":"The methodology presented in this paper covers the topic of automatic detection of humans based on two types of images that do not rely on the visible light spectrum, namely on thermal and depth images. Various scenarios are considered with the use of deep neural networks being extensions of Faster R-CNN models. Apart from detecting people, independently, with the use of depth and thermal images, we proposed two data fusion methods. The first approach is the early fusion method with a 2-channel compound input. As it turned out, its performance surpassed that of all other methods tested. However, this approach requires that the model be trained on a dataset containing both types of spatially and temporally synchronized imaging sources. If such a training environment cannot be setup or if the specified dataset is not sufficiently large, we recommend the late fusion scenario, i.e. the other approach explored in this paper. Late fusion models can be trained with single-source data. We introduce the dual-NMS method for fusing the depth and thermal imaging approaches, as its results are better than those achieved by the","PeriodicalId":227678,"journal":{"name":"Journal of Telecommunictions and Information Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunictions and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2021.155521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The methodology presented in this paper covers the topic of automatic detection of humans based on two types of images that do not rely on the visible light spectrum, namely on thermal and depth images. Various scenarios are considered with the use of deep neural networks being extensions of Faster R-CNN models. Apart from detecting people, independently, with the use of depth and thermal images, we proposed two data fusion methods. The first approach is the early fusion method with a 2-channel compound input. As it turned out, its performance surpassed that of all other methods tested. However, this approach requires that the model be trained on a dataset containing both types of spatially and temporally synchronized imaging sources. If such a training environment cannot be setup or if the specified dataset is not sufficiently large, we recommend the late fusion scenario, i.e. the other approach explored in this paper. Late fusion models can be trained with single-source data. We introduce the dual-NMS method for fusing the depth and thermal imaging approaches, as its results are better than those achieved by the
基于深度和热成像的人体检测
本文提出的方法涵盖了基于两种不依赖于可见光谱的图像(即热图像和深度图像)的人体自动检测主题。使用深度神经网络作为Faster R-CNN模型的扩展,考虑了各种场景。在独立检测人的基础上,利用深度图像和热图像,提出了两种数据融合方法。第一种方法是采用双通道复合输入的早期融合方法。事实证明,它的性能超过了所有其他测试过的方法。然而,这种方法需要在包含两种类型的空间和时间同步成像源的数据集上训练模型。如果无法建立这样的训练环境,或者指定的数据集不够大,我们建议使用后期融合场景,即本文探索的另一种方法。后期融合模型可以用单源数据进行训练。我们介绍了双nms方法,用于融合深度和热成像方法,其结果优于传统的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信