A parallel Ant Colony Optimization algorithm with GPU-acceleration based on All-In-Roulette selection

Jie Fu, Lin Lei, Guohua Zhou
{"title":"A parallel Ant Colony Optimization algorithm with GPU-acceleration based on All-In-Roulette selection","authors":"Jie Fu, Lin Lei, Guohua Zhou","doi":"10.1109/IWACI.2010.5585115","DOIUrl":null,"url":null,"abstract":"Ant Colony Optimization is computationally expensive when it comes to complex problems. The Jacket toolbox allows implementation of MATLAB programs in Graphics Processing Unit (GPU). This paper presents and implements a parallel MAX-MIN Ant System (MMAS) based on a GPU+CPU hardware platform under the MATLAB environment with Jacket toolbox to solve Traveling Salesman Problem (TSP). The key idea is to let all ants share only one pseudorandom number matrix, one pheromone matrix, one taboo matrix, and one probability matrix. We also use a new selection approach based on those matrices, named AIR (All-In-Roulette). The main contribution of this paper is the description of how to design parallel MMAS based on those ideas and the comparison to the relevant sequential version. The computational results show that our parallel algorithm is much more efficient than the sequential version.","PeriodicalId":196572,"journal":{"name":"International Workshop on Advanced Computational Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Advanced Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWACI.2010.5585115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

Ant Colony Optimization is computationally expensive when it comes to complex problems. The Jacket toolbox allows implementation of MATLAB programs in Graphics Processing Unit (GPU). This paper presents and implements a parallel MAX-MIN Ant System (MMAS) based on a GPU+CPU hardware platform under the MATLAB environment with Jacket toolbox to solve Traveling Salesman Problem (TSP). The key idea is to let all ants share only one pseudorandom number matrix, one pheromone matrix, one taboo matrix, and one probability matrix. We also use a new selection approach based on those matrices, named AIR (All-In-Roulette). The main contribution of this paper is the description of how to design parallel MMAS based on those ideas and the comparison to the relevant sequential version. The computational results show that our parallel algorithm is much more efficient than the sequential version.
基于全局轮盘选择的gpu加速并行蚁群优化算法
当涉及到复杂问题时,蚁群优化在计算上是昂贵的。夹克工具箱允许在图形处理单元(GPU)中实现MATLAB程序。本文在MATLAB环境下,利用Jacket工具箱,提出并实现了一个基于GPU+CPU硬件平台的并行MAX-MIN蚂蚁系统(MMAS),用于求解旅行商问题(TSP)。关键思想是让所有蚂蚁只共享一个伪随机数矩阵、一个信息素矩阵、一个禁忌矩阵和一个概率矩阵。我们还使用了一种基于这些矩阵的新的选择方法,称为AIR (All-In-Roulette)。本文的主要贡献是描述了如何在这些思想的基础上设计并行MMAS,并与相关的顺序版本进行了比较。计算结果表明,我们的并行算法比顺序算法效率高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信