Analyzing gaze transition behavior using bayesian mixed effects Markov models

Islam Akef Ebeid, Nilavra Bhattacharya, J. Gwizdka, A. Sarkar
{"title":"Analyzing gaze transition behavior using bayesian mixed effects Markov models","authors":"Islam Akef Ebeid, Nilavra Bhattacharya, J. Gwizdka, A. Sarkar","doi":"10.1145/3314111.3319839","DOIUrl":null,"url":null,"abstract":"The complex stochastic nature of eye tracking data calls for exploring sophisticated statistical models to ensure reliable inference in multi-trial eye-tracking experiments. We employ a Bayesian semi-parametric mixed-effects Markov model to compare gaze transition matrices between different experimental factors accommodating individual random effects. The model not only allows us to assess global influences of the external factors on the gaze transition dynamics but also provides comprehension of these effects at a deeper local level. We experimented to explore the impact of recognizing distorted images of artwork and landmarks on the gaze transition patterns. Our dataset comprises sequences representing areas of interest visited when applying a content independent grid to the resulting scan paths in a multi-trial setting. Results suggest that image recognition to some extent affects the dynamics of the transitions while image type played an essential role in the viewing behavior.","PeriodicalId":161901,"journal":{"name":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314111.3319839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The complex stochastic nature of eye tracking data calls for exploring sophisticated statistical models to ensure reliable inference in multi-trial eye-tracking experiments. We employ a Bayesian semi-parametric mixed-effects Markov model to compare gaze transition matrices between different experimental factors accommodating individual random effects. The model not only allows us to assess global influences of the external factors on the gaze transition dynamics but also provides comprehension of these effects at a deeper local level. We experimented to explore the impact of recognizing distorted images of artwork and landmarks on the gaze transition patterns. Our dataset comprises sequences representing areas of interest visited when applying a content independent grid to the resulting scan paths in a multi-trial setting. Results suggest that image recognition to some extent affects the dynamics of the transitions while image type played an essential role in the viewing behavior.
利用贝叶斯混合效应马尔可夫模型分析凝视转移行为
眼动追踪数据具有复杂的随机性,需要探索复杂的统计模型来保证多试验眼动追踪实验的可靠推断。我们采用贝叶斯半参数混合效应马尔可夫模型来比较不同实验因素之间的凝视转移矩阵,以适应个体随机效应。该模型不仅使我们能够评估外部因素对注视转移动态的全局影响,而且还提供了在更深层次的局部水平上对这些影响的理解。实验探讨了艺术品和地标的扭曲图像识别对注视转移模式的影响。我们的数据集包含序列,表示在多次试验设置中对结果扫描路径应用内容独立网格时访问的感兴趣区域。结果表明,图像识别在一定程度上影响了过渡的动态,而图像类型对观看行为起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信