Gradient-based directional predictor for reversible data hiding

Yan Chen, Delu Huang, Guangyao Ma, Jianjun Wang
{"title":"Gradient-based directional predictor for reversible data hiding","authors":"Yan Chen, Delu Huang, Guangyao Ma, Jianjun Wang","doi":"10.1109/ICIEA.2018.8397956","DOIUrl":null,"url":null,"abstract":"Prediction-error expansion (PEE) is assumed to be the most efficient technique for reversible data hiding (RDH) recently. In PEE, generally, the data is embedded by modifying the prediction-error histogram (PEH). A sharper Laplacian distributed PEH can guarantee a larger embedding capacity (EC) and the accuracy of prediction on pixel is a key factor to form such PEH. In this paper, we propose a gradient-based directional predictor for PEE. It utilizes the gradient information of pixel's context and can generate more precise prediction result. Besides, in our method, the data is embedded in a pairwise manner for better marked image quality. The pixels are sorted into different collections according to their local complexities (LC) first and each group of pixels are optimally paired for data embedding. Experimental results show that our method outperforms some state-of-the-art techniques.","PeriodicalId":140420,"journal":{"name":"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2018.8397956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Prediction-error expansion (PEE) is assumed to be the most efficient technique for reversible data hiding (RDH) recently. In PEE, generally, the data is embedded by modifying the prediction-error histogram (PEH). A sharper Laplacian distributed PEH can guarantee a larger embedding capacity (EC) and the accuracy of prediction on pixel is a key factor to form such PEH. In this paper, we propose a gradient-based directional predictor for PEE. It utilizes the gradient information of pixel's context and can generate more precise prediction result. Besides, in our method, the data is embedded in a pairwise manner for better marked image quality. The pixels are sorted into different collections according to their local complexities (LC) first and each group of pixels are optimally paired for data embedding. Experimental results show that our method outperforms some state-of-the-art techniques.
基于梯度的可逆数据隐藏方向预测器
预测误差展开(PEE)是目前公认的最有效的可逆数据隐藏技术。在PEE中,通常通过修改预测误差直方图(PEH)来嵌入数据。更清晰的拉普拉斯分布PEH可以保证更大的嵌入容量,而对像素的预测精度是形成这种PEH的关键因素。在本文中,我们提出了一个基于梯度的PEE方向预测器。该算法利用了像素所在环境的梯度信息,可以产生更精确的预测结果。此外,在我们的方法中,数据以两两方式嵌入,以获得更好的标记图像质量。首先根据像素的局部复杂度(LC)将像素分成不同的集合,并对每组像素进行最优配对以进行数据嵌入。实验结果表明,我们的方法优于一些最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信