Classifying shoulder implants in X-ray images using Big data techniques

M. Sivachandran, Dr. T. Krishnakumar
{"title":"Classifying shoulder implants in X-ray images using Big data techniques","authors":"M. Sivachandran, Dr. T. Krishnakumar","doi":"10.4108/EAI.7-6-2021.2308636","DOIUrl":null,"url":null,"abstract":"This research work focuses on optimal solution for the image detection and segmentation. The prosthesis may – a few or numerous years after it was embedded – come needing fix or substitution. In a portion of these cases, the maker and the model of the prosthesis might be obscure to the patients and their essential consideration specialists, for instance when the medical procedure was led in another nation where the patient has presently no admittance to the records. The highest accuracy value is 81.68% which is while applying the=7k=6 and the lowest accuracy value is 65.6% when apply the k=7. The highest precision value is 81.68% while applying the k=1 and very lowest precision value is 73.69% lies on k=2 and k=9.The highest recall value is 83.69% which is produced by while applying the parameter k=6, the lowest recall value is 65.76% while applying the parameter k=9. The K=10 model takes more time to build the model is while applying the k=10 and very low time consumption model is k=8. Another conceivable instance of not knowing the specific producer and model could be expected uncertainty in clinical records or clinical images.","PeriodicalId":422301,"journal":{"name":"Proceedings of the First International Conference on Computing, Communication and Control System, I3CAC 2021, 7-8 June 2021, Bharath University, Chennai, India","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Conference on Computing, Communication and Control System, I3CAC 2021, 7-8 June 2021, Bharath University, Chennai, India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.7-6-2021.2308636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research work focuses on optimal solution for the image detection and segmentation. The prosthesis may – a few or numerous years after it was embedded – come needing fix or substitution. In a portion of these cases, the maker and the model of the prosthesis might be obscure to the patients and their essential consideration specialists, for instance when the medical procedure was led in another nation where the patient has presently no admittance to the records. The highest accuracy value is 81.68% which is while applying the=7k=6 and the lowest accuracy value is 65.6% when apply the k=7. The highest precision value is 81.68% while applying the k=1 and very lowest precision value is 73.69% lies on k=2 and k=9.The highest recall value is 83.69% which is produced by while applying the parameter k=6, the lowest recall value is 65.76% while applying the parameter k=9. The K=10 model takes more time to build the model is while applying the k=10 and very low time consumption model is k=8. Another conceivable instance of not knowing the specific producer and model could be expected uncertainty in clinical records or clinical images.
利用大数据技术对x射线图像中的肩部植入物进行分类
本课题主要研究图像检测与分割的最优解决方案。假体在植入数年或数年后可能需要固定或替换。在其中一部分病例中,患者和他们的主要考虑专家可能不知道假体的制造者和模型,例如,当医疗程序在另一个国家进行时,患者目前没有权限查看记录。应用=7k=6时,准确率最高为81.68%,应用k=7时,准确率最低为65.6%。k=1时精度最高,为81.68%,k=2和k=9时精度最低,为73.69%。当参数k=6时,召回率最高为83.69%,当参数k=9时,召回率最低为65.76%。K=10模型需要更多的时间来构建模型,而应用K=10和非常低的时间消耗模型K= 8。另一个可以想象的不知道具体生产者和模型的例子可能是临床记录或临床图像的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信