{"title":"Wavelet frames generated by bandpass prolate functions","authors":"J. Hogan, J. Lakey","doi":"10.1109/SAMPTA.2015.7148863","DOIUrl":null,"url":null,"abstract":"We refer to eigenfunctions of the kernel corresponding to truncation in a time interval followed by truncation in a frequency band as bandpass prelates (BPPs). We prove frame bounds for certain families of shifts of bandpass prolates, and we numerically construct dual frames for finite dimensional analogues. In the continuous case, the corresponding families produce wavelet frames for the space of square-integrable functions.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We refer to eigenfunctions of the kernel corresponding to truncation in a time interval followed by truncation in a frequency band as bandpass prelates (BPPs). We prove frame bounds for certain families of shifts of bandpass prolates, and we numerically construct dual frames for finite dimensional analogues. In the continuous case, the corresponding families produce wavelet frames for the space of square-integrable functions.