Brain tumor segmentation based on CBAM-TransUNet

Xingxin Chen, Lei Yang
{"title":"Brain tumor segmentation based on CBAM-TransUNet","authors":"Xingxin Chen, Lei Yang","doi":"10.1145/3556551.3561192","DOIUrl":null,"url":null,"abstract":"Brain tumor is one of the most serious brain diseases, and accurate brain tumor segmentation is crucial in clinical planning treatment and evaluating treatment outcomes in brain tumor patients. In this paper, we propose a 3D visual transducer model (CBAM-TransUNet) that incorporates an attention mechanism for 3D multimodal brain tumor edge detection and segmentation, to improve the accuracy of brain tumor segmentation. In our proposed model based on the framework of the U-Net model (Ronneberger O et al., 2015), Swin Transformer module (LIU Z et al., 2021) is introduced in the process of the encoder and decoder of the model, and the convolution block attention module (WOOS et al., 2018) is applied at the bottleneck layer. Comprehensive experiments are implemented on the BraTS 2021 dataset and it shows that the proposed model obtains competitive results: the Dice coefficients of whole tumor, core tumor and enhanced tumor segmentation are 93.08%, 91.49% and 87.76%, respectively, and the other 95% Hausdorff distances are 2.93mm, 4.20mm, 4.91mm. The proposed CBAM-TransUNet model can effectively improve the accuracy of brain tumor segmentation.","PeriodicalId":202226,"journal":{"name":"Proceedings of the 1st ACM Workshop on Mobile and Wireless Sensing for Smart Healthcare","volume":"1 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM Workshop on Mobile and Wireless Sensing for Smart Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556551.3561192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Brain tumor is one of the most serious brain diseases, and accurate brain tumor segmentation is crucial in clinical planning treatment and evaluating treatment outcomes in brain tumor patients. In this paper, we propose a 3D visual transducer model (CBAM-TransUNet) that incorporates an attention mechanism for 3D multimodal brain tumor edge detection and segmentation, to improve the accuracy of brain tumor segmentation. In our proposed model based on the framework of the U-Net model (Ronneberger O et al., 2015), Swin Transformer module (LIU Z et al., 2021) is introduced in the process of the encoder and decoder of the model, and the convolution block attention module (WOOS et al., 2018) is applied at the bottleneck layer. Comprehensive experiments are implemented on the BraTS 2021 dataset and it shows that the proposed model obtains competitive results: the Dice coefficients of whole tumor, core tumor and enhanced tumor segmentation are 93.08%, 91.49% and 87.76%, respectively, and the other 95% Hausdorff distances are 2.93mm, 4.20mm, 4.91mm. The proposed CBAM-TransUNet model can effectively improve the accuracy of brain tumor segmentation.
基于CBAM-TransUNet的脑肿瘤分割
脑肿瘤是最严重的脑部疾病之一,准确的脑肿瘤分割对脑肿瘤患者的临床治疗计划和疗效评价至关重要。本文提出了一种三维视觉换能器模型(CBAM-TransUNet),该模型结合了注意机制,用于三维多模态脑肿瘤边缘检测和分割,以提高脑肿瘤分割的准确性。在我们提出的基于U-Net模型框架的模型(Ronneberger O et al., 2015)中,在模型的编码器和解码器过程中引入了Swin Transformer模块(LIU Z et al., 2021),在瓶颈层应用了卷积块注意力模块(WOOS et al., 2018)。在BraTS 2021数据集上进行综合实验,结果表明该模型取得了较好的分割效果:全肿瘤、核心肿瘤和增强肿瘤分割的Dice系数分别为93.08%、91.49%和87.76%,其余95% Hausdorff距离分别为2.93mm、4.20mm、4.91mm。所提出的CBAM-TransUNet模型可以有效提高脑肿瘤分割的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信