Domenico Cantone, A. Formisano, Marianna Nicolosi Asmundo, E. Omodeo
{"title":"A graphical representation of relational formulae with complementation","authors":"Domenico Cantone, A. Formisano, Marianna Nicolosi Asmundo, E. Omodeo","doi":"10.1051/ita/2012003","DOIUrl":null,"url":null,"abstract":"We study translations of dyadic first-order sentences into equalities between relational expressions. The proposed translation techniques (which work also in the converse direction) exploit a graphical representation of formulae in a hybrid of the two formalisms. A major enhancement relative to previous work is that we can cope with the relational complement construct and with the negation connective. Complementation is handled by adopting a Smullyan-like uniform notation to classify and decompose relational expressions; negation is treated by means of a generalized graph-representation of formulae in L + ,","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2012003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We study translations of dyadic first-order sentences into equalities between relational expressions. The proposed translation techniques (which work also in the converse direction) exploit a graphical representation of formulae in a hybrid of the two formalisms. A major enhancement relative to previous work is that we can cope with the relational complement construct and with the negation connective. Complementation is handled by adopting a Smullyan-like uniform notation to classify and decompose relational expressions; negation is treated by means of a generalized graph-representation of formulae in L + ,