Combining emerging hotspots analysis with XGBoost for modeling pedestrian injuries in pedestrian-vehicle crashes: a case study of North Carolina

Yang Li, W. Fan, Li Song, Shaojie Liu
{"title":"Combining emerging hotspots analysis with XGBoost for modeling pedestrian injuries in pedestrian-vehicle crashes: a case study of North Carolina","authors":"Yang Li, W. Fan, Li Song, Shaojie Liu","doi":"10.1080/19439962.2022.2164814","DOIUrl":null,"url":null,"abstract":"Abstract Pedestrians might face more dangers and sustain severer injuries in crashes than others. Also, the crash data has inherent patterns related to both space and time. Crashes that happened in locations with highly aggregated uptrend patterns should be worth exploring to examine the most recently deteriorative factors affecting pedestrian-injury severities in crashes. Therefore, applying proper modeling approaches is needed to identify the causes of pedestrian-vehicle crashes to improve pedestrian safety. In this study, an emerging hotspot analysis is firstly utilized to identify the most targeted hotspots, followed by a proposed XGBoost model that analyzes the most recently deteriorative factors affecting pedestrian injury severities. The overall accuracy of the best model on the hotspot dataset is 94.49%, which shows a relatively high performance compared to conventional models. Seven factors are identified to increase the likelihood of fatal injury, including “land development: farm, wood and pasture” (FWP), “interstate”, “US route”, “hit and run”, “alcohol-impaired driver” (AID), “urban”, and “alcohol-impaired-pedestrian”. While for incapacitating injury, there are five significant factors including “work zone”, “interstate”, “US route”, “curved roadway” and “alcohol-impaired-pedestrian”. The results of this research could give a solid reference for the identification of contributing factors affecting pedestrian-injury severities to policymakers and researchers.","PeriodicalId":205624,"journal":{"name":"Journal of Transportation Safety & Security","volume":"573 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transportation Safety & Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19439962.2022.2164814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Pedestrians might face more dangers and sustain severer injuries in crashes than others. Also, the crash data has inherent patterns related to both space and time. Crashes that happened in locations with highly aggregated uptrend patterns should be worth exploring to examine the most recently deteriorative factors affecting pedestrian-injury severities in crashes. Therefore, applying proper modeling approaches is needed to identify the causes of pedestrian-vehicle crashes to improve pedestrian safety. In this study, an emerging hotspot analysis is firstly utilized to identify the most targeted hotspots, followed by a proposed XGBoost model that analyzes the most recently deteriorative factors affecting pedestrian injury severities. The overall accuracy of the best model on the hotspot dataset is 94.49%, which shows a relatively high performance compared to conventional models. Seven factors are identified to increase the likelihood of fatal injury, including “land development: farm, wood and pasture” (FWP), “interstate”, “US route”, “hit and run”, “alcohol-impaired driver” (AID), “urban”, and “alcohol-impaired-pedestrian”. While for incapacitating injury, there are five significant factors including “work zone”, “interstate”, “US route”, “curved roadway” and “alcohol-impaired-pedestrian”. The results of this research could give a solid reference for the identification of contributing factors affecting pedestrian-injury severities to policymakers and researchers.
结合新兴热点分析与XGBoost对行人-车辆碰撞中行人伤害建模:以北卡罗来纳州为例
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信