Robust Tracking in FLIR Imagery by Mean Shift Combined with Particle Filter Algorithm

Wei Yang, Shuangyan Hu, Jun-shan Li, Deqin Shi
{"title":"Robust Tracking in FLIR Imagery by Mean Shift Combined with Particle Filter Algorithm","authors":"Wei Yang, Shuangyan Hu, Jun-shan Li, Deqin Shi","doi":"10.1109/KAMW.2008.4810602","DOIUrl":null,"url":null,"abstract":"A novel target tracking algorithm for forward-looking infrared image sequences is proposed based on mean shift and particle filter algorithm. The mean shift algorithm is served as an efficient gradient estimation and mode seeking procedure in the particle filter. Particles move toward the modes of the posterior kernel density estimation. The infrared target is represented in the cascade grey space and the state transition model is established as the second-order auto-regressive model. We use the modified particle filter to track the infrared target robustly. Experiment results show that the proposed tracking algorithm is efficient and robust for the infrared targets with severe clutter background and provide better tracking performance than the conventional particle filter.","PeriodicalId":375613,"journal":{"name":"2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAMW.2008.4810602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A novel target tracking algorithm for forward-looking infrared image sequences is proposed based on mean shift and particle filter algorithm. The mean shift algorithm is served as an efficient gradient estimation and mode seeking procedure in the particle filter. Particles move toward the modes of the posterior kernel density estimation. The infrared target is represented in the cascade grey space and the state transition model is established as the second-order auto-regressive model. We use the modified particle filter to track the infrared target robustly. Experiment results show that the proposed tracking algorithm is efficient and robust for the infrared targets with severe clutter background and provide better tracking performance than the conventional particle filter.
均值移位结合粒子滤波算法在FLIR图像中的鲁棒跟踪
提出了一种基于均值移位和粒子滤波的前视红外图像序列目标跟踪算法。在粒子滤波中,均值移位算法是一种有效的梯度估计和寻模方法。粒子向后验核密度估计的模态移动。将红外目标用级联灰空间表示,将状态转移模型建立为二阶自回归模型。采用改进的粒子滤波方法对红外目标进行鲁棒跟踪。实验结果表明,该算法对严重杂波背景下的红外目标具有较强的鲁棒性,具有较好的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信