3D object retrieval based on visual keywords using Relative Angle Context Distribution

Q. He, Jun Feng, H. Ip
{"title":"3D object retrieval based on visual keywords using Relative Angle Context Distribution","authors":"Q. He, Jun Feng, H. Ip","doi":"10.1109/WIAMIS.2009.5031479","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a new 3D object retrieval method based on the visual keywords. In our method, the visual keywords are generated from the clusters of Relative Angle Context Distribution, which provides a statistical shape context that captures local shape characters and is also rotational and scale invariant. We also adopt the term frequency model commonly used for text retrieval to compare two 3D objects according to their keyword sets based on a cosine similarity measure. Our experiments have demonstrated that this method is robust for its invariance with respect to object orientation and scaling, and yields a higher precision when compared to existing retrieval methods such as the Distance Map.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we proposed a new 3D object retrieval method based on the visual keywords. In our method, the visual keywords are generated from the clusters of Relative Angle Context Distribution, which provides a statistical shape context that captures local shape characters and is also rotational and scale invariant. We also adopt the term frequency model commonly used for text retrieval to compare two 3D objects according to their keyword sets based on a cosine similarity measure. Our experiments have demonstrated that this method is robust for its invariance with respect to object orientation and scaling, and yields a higher precision when compared to existing retrieval methods such as the Distance Map.
基于相对角度上下文分布的视觉关键词三维目标检索
本文提出了一种基于视觉关键词的三维目标检索方法。在我们的方法中,视觉关键词是从相对角度上下文分布的聚类中生成的,它提供了一个统计形状上下文,可以捕获局部形状特征,并且是旋转和尺度不变的。我们还采用了文本检索中常用的词频模型,基于余弦相似度度量,根据关键词集对两个3D对象进行比较。我们的实验表明,该方法在对象方向和缩放方面具有鲁棒性,并且与现有的检索方法(如距离地图)相比具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信