The RegularChains library in MAPLE

F. Lemaire, M. M. Maza, Yuzhen Xie
{"title":"The RegularChains library in MAPLE","authors":"F. Lemaire, M. M. Maza, Yuzhen Xie","doi":"10.1145/1113439.1113456","DOIUrl":null,"url":null,"abstract":"Performing calculations modulo a set of relations is a basictechnique in algebra. For instance, computing the inverse of aninteger modulo a prime integer or computing the inverse of thecomplex number 3 + 2<i>t</i> modulo the relation&ell;<sup>2</sup> + 1 = 0. Computing modulo a set<i>S</i> containing more than one relation requiresfrom <i>S</i> to have some mathematical structure. Forinstance, computing the inverse of <i>p</i> =<i>x</i> + <i>y</i> modulo<i>S</i> ={<i>x</i><sup>2</sup> +<i>y</i> +1,<i>y</i><sup>2</sup> +<i>x</i> + 1} is difficult unless one realizes thatthis question is equivalent to computing the inverse of<i>p</i> modulo <i>C</i> ={<i>x</i><sup>4</sup> +2<i>x</i><sup>2</sup> +<i>x</i> + 2,<i>y</i> +<i>x</i><sup>2</sup> + 1}. Indeed, fromthere one can simplify <i>p</i> using<i>y</i> =-<i>x</i><sup>2</sup> - 1 leading to<i>q</i> =-<i>x</i><sup>2</sup> +<i>x</i> - 1 and compute the inverse of<i>q</i> modulo<i>x</i><sup>4</sup> +2<i>x</i><sup>2</sup> +<i>x</i> + 2 (using the extended Euclidean algorithm)leading to -1/2<i>x</i><sup>3</sup> -1/2<i>x</i>. One commonly used mathematical structurefor a set of algebraic relations is that of a<i>Gr&ouml;bner basis.</i> It is particularly wellsuited for deciding whether a quantity is null or not modulo a setof relations. For inverse computations, the notion of a<i>regular chain</i> is more adequate. For instance,computing the inverse of <i>p</i> =<i>x</i> + <i>y</i> modulo the set<i>C</i> ={<i>y</i><sup>2</sup> -2<i>x</i> +1,<i>x</i><sup>2</sup> -3<i>x</i> + 2}, which is both a Gr&ouml;bner basisand a regular chain, is easily answered in this latter point ofview. Indeed, it naturally leads to consider the GCD of<i>p</i> and<i>C<inf>y</inf></i> =<i>y</i><sup>2</sup> -2<i>x</i> + 1 modulo the relation<i>C<inf>x</inf></i> =<i>x</i><sup>2</sup> -3<i>x</i> + 2 = 0, which is\n[EQUATION]\nThis shows that <i>p</i> has no inverse if<i>x</i> = 1 and has an inverse (which can be computedand which is -<i>y</i> + 2) if <i>x</i> =2.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1113439.1113456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Performing calculations modulo a set of relations is a basictechnique in algebra. For instance, computing the inverse of aninteger modulo a prime integer or computing the inverse of thecomplex number 3 + 2t modulo the relationℓ2 + 1 = 0. Computing modulo a setS containing more than one relation requiresfrom S to have some mathematical structure. Forinstance, computing the inverse of p =x + y moduloS ={x2 +y +1,y2 +x + 1} is difficult unless one realizes thatthis question is equivalent to computing the inverse ofp modulo C ={x4 +2x2 +x + 2,y +x2 + 1}. Indeed, fromthere one can simplify p usingy =-x2 - 1 leading toq =-x2 +x - 1 and compute the inverse ofq modulox4 +2x2 +x + 2 (using the extended Euclidean algorithm)leading to -1/2x3 -1/2x. One commonly used mathematical structurefor a set of algebraic relations is that of aGröbner basis. It is particularly wellsuited for deciding whether a quantity is null or not modulo a setof relations. For inverse computations, the notion of aregular chain is more adequate. For instance,computing the inverse of p =x + y modulo the setC ={y2 -2x +1,x2 -3x + 2}, which is both a Gröbner basisand a regular chain, is easily answered in this latter point ofview. Indeed, it naturally leads to consider the GCD ofp andCy =y2 -2x + 1 modulo the relationCx =x2 -3x + 2 = 0, which is [EQUATION] This shows that p has no inverse ifx = 1 and has an inverse (which can be computedand which is -y + 2) if x =2.
MAPLE中的正则archains库
对一组关系进行模计算是代数中的一项基本技术。例如,计算一个整数模一个素数的逆,或者计算复数3 + 2t的逆模关系2 + 1 = 0。对包含一个以上关系的集合进行模计算要求S具有一定的数学结构。例如,计算p =x +y模的逆={x2 +y +1,y2 +x +1}是很困难的,除非人们意识到这个问题等价于计算p模C ={x4 +2x2 +x +2,y +x2 +1}的逆。实际上,从这里我们可以用y =-x2 -1将p简化为q =-x2 +x -1,并计算q模x4 +2x2 +x +2的倒数(使用扩展的欧几里得算法),从而得到-1/2x3 -1/2x。一组代数关系的常用数学结构是agö - bner基结构。它特别适合于判定一个量对一组关系是否取模为零。对于逆计算,正则链的概念更为合适。例如,计算p =x + y对setC ={y2 -2x +1,x2 -3x + 2}取模的逆,它既是一个Gröbner基又是一个正则链,在后一种观点中很容易回答。实际上,它自然导致考虑p和cy =y2 -2x + 1的GCD对关系cx =x2 -3x + 2 = 0取模,即[EQUATION]。这表明如果x =2, p没有逆(如果x = 1),并且有逆(可以计算并且是-y + 2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信