Performance Evaluation of Multi-camera Visual Tracking

L. Marcenaro, Pietro Morerio, C. Regazzoni
{"title":"Performance Evaluation of Multi-camera Visual Tracking","authors":"L. Marcenaro, Pietro Morerio, C. Regazzoni","doi":"10.1109/AVSS.2012.86","DOIUrl":null,"url":null,"abstract":"Main drawbacks in single-camera multi-target visual tracking can be partially removed by increasing the amount of information gathered on the scene, i.e. by adding cameras. By adopting such a multi-camera approach, multiple sensors cooperate for overall scene understanding. However, new issues arise such as data association and data fusion. This work addresses the issue of evaluating the performance of a multi-camera tracking algorithm based on Rao-Blackwellized Monte Carlo data association (RBMCDA) on real data. For this purpose, a new metric based on three performance indexes is developed.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"10 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Main drawbacks in single-camera multi-target visual tracking can be partially removed by increasing the amount of information gathered on the scene, i.e. by adding cameras. By adopting such a multi-camera approach, multiple sensors cooperate for overall scene understanding. However, new issues arise such as data association and data fusion. This work addresses the issue of evaluating the performance of a multi-camera tracking algorithm based on Rao-Blackwellized Monte Carlo data association (RBMCDA) on real data. For this purpose, a new metric based on three performance indexes is developed.
多摄像机视觉跟踪的性能评价
单摄像机多目标视觉跟踪的主要缺点可以通过增加现场收集的信息量来部分消除,即通过增加摄像机。通过采用这种多摄像头方法,多个传感器可以协同工作以实现对整个场景的理解。然而,数据关联和数据融合等新问题也随之出现。这项工作解决了基于Rao-Blackwellized Monte Carlo数据关联(RBMCDA)的多相机跟踪算法在真实数据上的性能评估问题。为此,开发了基于三个性能指标的新度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信