A generative model for 3D range sensors in the Bayesian Occupancy filter framework: Application for fusion in smart home monitoring

J. Ros, K. Mekhnacha
{"title":"A generative model for 3D range sensors in the Bayesian Occupancy filter framework: Application for fusion in smart home monitoring","authors":"J. Ros, K. Mekhnacha","doi":"10.1109/ICIF.2010.5712110","DOIUrl":null,"url":null,"abstract":"The utilisation of a network of heterogeneous sensors to track humans and analyse their behaviours in indoor environment is essential due to the high risk of occlusions. For this purpose, the Bayesian Occupancy (BOF) filter was shown efficient to fuse data coming from infrared and visible cameras by providing the occupancy/velocity probability distributions of each spatial cell of the grid representation of the environment. As the main contribution of this paper, we will present a novel generative sensor model intended to be used for 3D sensors providing range information (e.g., time-of-flight cameras). In order to show the effectiveness of our solution, we will present a fusion example using (i) two visible cameras, (ii) one infrared camera, (ii) and one PMD sensor. We will especially show that this fusion scheme significantly increase the robustness of the tracking process.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5712110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The utilisation of a network of heterogeneous sensors to track humans and analyse their behaviours in indoor environment is essential due to the high risk of occlusions. For this purpose, the Bayesian Occupancy (BOF) filter was shown efficient to fuse data coming from infrared and visible cameras by providing the occupancy/velocity probability distributions of each spatial cell of the grid representation of the environment. As the main contribution of this paper, we will present a novel generative sensor model intended to be used for 3D sensors providing range information (e.g., time-of-flight cameras). In order to show the effectiveness of our solution, we will present a fusion example using (i) two visible cameras, (ii) one infrared camera, (ii) and one PMD sensor. We will especially show that this fusion scheme significantly increase the robustness of the tracking process.
贝叶斯占位滤波框架下三维距离传感器的生成模型:融合在智能家居监测中的应用
利用异构传感器网络来跟踪人类并分析他们在室内环境中的行为是必不可少的,因为闭塞的风险很高。为此,贝叶斯占用(BOF)滤波器通过提供环境网格表示的每个空间单元的占用/速度概率分布,可以有效地融合来自红外和可见光摄像机的数据。作为本文的主要贡献,我们将提出一种新的生成传感器模型,旨在用于提供距离信息的3D传感器(例如,飞行时间相机)。为了展示我们的解决方案的有效性,我们将使用(i)两个可见光摄像机,(ii)一个红外摄像机,(ii)和一个PMD传感器提供一个融合示例。我们将特别证明这种融合方案显著提高了跟踪过程的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信