Comparative study of dimensionality reduction methods for remote sensing images interpretation

A. Sellami, Mohamed Farah
{"title":"Comparative study of dimensionality reduction methods for remote sensing images interpretation","authors":"A. Sellami, Mohamed Farah","doi":"10.1109/ATSIP.2018.8364490","DOIUrl":null,"url":null,"abstract":"Hyperspectral imagery is widely used for the identification and monitoring of earth surface, which in turn need good classification performances. However, the high spectral dimensionality of hyperspectral images degrades classification accuracy and increases computational complexity. To overcome these issues, dimensionality reduction has become an essential preprocessing step in order to enhance classifiers performances using hyperspectral images. Dimensionality reduction tackles the problem of the high dimensionality, but also the high correlation between the spectral bands of hyperspectral images. In this paper, we first review the main dimensionality reduction approaches and compare their performances when used for the classification task using the Support Vector Machines classifier. We also propose a combination of feature extraction and band selection for classification. We report the performances of all these methods using real hyperspectral images and show their efficiency for hyperspectral image classification.","PeriodicalId":332253,"journal":{"name":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2018.8364490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Hyperspectral imagery is widely used for the identification and monitoring of earth surface, which in turn need good classification performances. However, the high spectral dimensionality of hyperspectral images degrades classification accuracy and increases computational complexity. To overcome these issues, dimensionality reduction has become an essential preprocessing step in order to enhance classifiers performances using hyperspectral images. Dimensionality reduction tackles the problem of the high dimensionality, but also the high correlation between the spectral bands of hyperspectral images. In this paper, we first review the main dimensionality reduction approaches and compare their performances when used for the classification task using the Support Vector Machines classifier. We also propose a combination of feature extraction and band selection for classification. We report the performances of all these methods using real hyperspectral images and show their efficiency for hyperspectral image classification.
遥感影像解译降维方法的比较研究
高光谱图像广泛应用于地球表面的识别和监测,这就要求高光谱图像具有良好的分类性能。然而,高光谱图像的高光谱维数降低了分类精度,增加了计算复杂度。为了克服这些问题,降维已经成为一个重要的预处理步骤,以提高分类器使用高光谱图像的性能。降维既解决了高光谱图像的高维问题,又解决了高光谱图像光谱带之间的高相关性问题。在本文中,我们首先回顾了主要的降维方法,并比较了它们在使用支持向量机分类器进行分类任务时的性能。我们还提出了特征提取和波段选择相结合的分类方法。报告了这些方法在真实高光谱图像上的性能,并证明了它们对高光谱图像分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信