Adaptive generalized predictive control and model reference adaptive control for CSTR Reactor

M. Delbari, K. Salahshoor, B. Moshiri
{"title":"Adaptive generalized predictive control and model reference adaptive control for CSTR Reactor","authors":"M. Delbari, K. Salahshoor, B. Moshiri","doi":"10.1109/ICICIP.2010.5565238","DOIUrl":null,"url":null,"abstract":"Large numbers of industrial chemical process have nonlinear and time varying behavior, so to achieve good control properties it's necessary to use a powerful identification method that can track these variations properly. In this paper, an on- line recursive least square identification method based on ARX is used to have good knowledge about dynamic behavior of system, then for control goals two adaptive method is present: indirect adaptive control based pole placement and adaptive general predict control(GPC). The advantages of the methodologies are demonstrated on nonlinear Continuous Stirred Tank Reactor (CSTR) simulations. desired control properties is reached with a good parameter estimation and achieved results show the successful identifications and control methodologies. Result of two control strategy are compared together and advantages of Adaptive GPC is shown for time varying systems like CSTR.","PeriodicalId":152024,"journal":{"name":"2010 International Conference on Intelligent Control and Information Processing","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2010.5565238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Large numbers of industrial chemical process have nonlinear and time varying behavior, so to achieve good control properties it's necessary to use a powerful identification method that can track these variations properly. In this paper, an on- line recursive least square identification method based on ARX is used to have good knowledge about dynamic behavior of system, then for control goals two adaptive method is present: indirect adaptive control based pole placement and adaptive general predict control(GPC). The advantages of the methodologies are demonstrated on nonlinear Continuous Stirred Tank Reactor (CSTR) simulations. desired control properties is reached with a good parameter estimation and achieved results show the successful identifications and control methodologies. Result of two control strategy are compared together and advantages of Adaptive GPC is shown for time varying systems like CSTR.
CSTR反应器的自适应广义预测控制与模型参考自适应控制
大量的工业化工过程具有非线性和时变的特性,为了获得良好的控制性能,需要使用一种能够正确跟踪这些变化的强大的辨识方法。本文采用基于ARX的在线递归最小二乘辨识方法,充分了解系统的动态特性,针对控制目标提出了两种自适应方法:基于极点配置的间接自适应控制和自适应一般预测控制。通过对非线性连续搅拌槽式反应器(CSTR)的仿真,验证了该方法的优越性。通过良好的参数估计,达到了期望的控制性能,所获得的结果显示了成功的辨识和控制方法。比较了两种控制策略的结果,表明了自适应GPC在CSTR等时变系统中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信