Simplified Smoothing Splines for APC Models

G. Venter
{"title":"Simplified Smoothing Splines for APC Models","authors":"G. Venter","doi":"10.2139/ssrn.3852449","DOIUrl":null,"url":null,"abstract":"Smoothing splines are splines fit including a roughness penalty. They can be used across groups of variables in regression models to produce more parsimonious models with improved accuracy. For APC (age-period-cohort) models, the variables in each direction can be numbered sequentially 1:N, which simplifies spline fitting. Further simplification is proposed using a different roughness penalty. Some key calculations then become closed-form, and numeric optimization for the degree of smoothing is simpler. Further, this allows the entire estimation to be done simply in MCMC for Bayesian and random-effects models, improving the estimation of the smoothing parameter and providing distributions of the parameters (or random effects) and the selection of the spline knots.","PeriodicalId":226815,"journal":{"name":"Philosophy & Methodology of Economics eJournal","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophy & Methodology of Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3852449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Smoothing splines are splines fit including a roughness penalty. They can be used across groups of variables in regression models to produce more parsimonious models with improved accuracy. For APC (age-period-cohort) models, the variables in each direction can be numbered sequentially 1:N, which simplifies spline fitting. Further simplification is proposed using a different roughness penalty. Some key calculations then become closed-form, and numeric optimization for the degree of smoothing is simpler. Further, this allows the entire estimation to be done simply in MCMC for Bayesian and random-effects models, improving the estimation of the smoothing parameter and providing distributions of the parameters (or random effects) and the selection of the spline knots.
APC模型的简化平滑样条
平滑样条是包含粗糙度惩罚的样条拟合。它们可以跨回归模型中的变量组使用,以生成更简洁的模型,并提高准确性。对于APC (age-period-cohort)模型,每个方向的变量可以按顺序编号为1:N,简化了样条拟合。进一步的简化建议使用不同的粗糙度惩罚。一些关键的计算变成了封闭形式,平滑度的数值优化就更简单了。此外,这使得整个估计可以在MCMC中简单地完成贝叶斯和随机效应模型,改进平滑参数的估计,提供参数的分布(或随机效应)和样条结点的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信