Applications of CNN processing by template decomposition

B. Mirzai, D. Lim, G. Moschytz
{"title":"Applications of CNN processing by template decomposition","authors":"B. Mirzai, D. Lim, G. Moschytz","doi":"10.1109/CNNA.1998.685405","DOIUrl":null,"url":null,"abstract":"High connectivity cellular neural network (CNN) templates are inherently less robust than templates of lower connectivity. However, some types of detection tasks requiring a high degree of connectivity can be decomposed and realized by an algorithmic approach, instead of a single CNN template. The processing comprises several robust template types and logical operations. The basic template type proposed for the decomposition is at an intermediate point between high-connectivity CNN template processing and processing using digital logic exclusively.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

High connectivity cellular neural network (CNN) templates are inherently less robust than templates of lower connectivity. However, some types of detection tasks requiring a high degree of connectivity can be decomposed and realized by an algorithmic approach, instead of a single CNN template. The processing comprises several robust template types and logical operations. The basic template type proposed for the decomposition is at an intermediate point between high-connectivity CNN template processing and processing using digital logic exclusively.
模板分解在CNN处理中的应用
高连通性细胞神经网络(CNN)模板本质上比低连通性模板更弱。然而,某些类型的检测任务需要高度的连通性,可以通过一种算法的方法来分解和实现,而不是单一的CNN模板。该处理包括几个健壮的模板类型和逻辑操作。提出的用于分解的基本模板类型位于高连通性CNN模板处理和仅使用数字逻辑处理之间的中间点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信