Optic Disc and Fovea Localization based on Anatomical Constraints and Heatmaps Regression

Ling Luo, Feng Pan, Dingyu Xue, Xinglong Feng, Jiwei Nie
{"title":"Optic Disc and Fovea Localization based on Anatomical Constraints and Heatmaps Regression","authors":"Ling Luo, Feng Pan, Dingyu Xue, Xinglong Feng, Jiwei Nie","doi":"10.1109/CCDC52312.2021.9601379","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with anatomical landmark localization as a heatmap regression problem. Based on this, we introduce a lightweight architecture to simultaneously localize fovea and optic disc (OD). Additionally, considering that directly attaching argmax to the output layer can lead to confidence map offsets errors, we propose a centroid clustering algorithm to address this issue. Extensive experiments are constructed on the IDRiD dataset, confirming the superiority of the proposed method. In particular, the Euclidean errors on fovea and OD are 45.034 and 21.101 (in pixels), respectively, which exceeds the other competitors of IDRiD Challenge 2018 by a large margin. Furthermore, at a resolution of $420\\times 356$ the 90ms inference speed of a single image is conducive to large-scale clinical diagnosis.","PeriodicalId":143976,"journal":{"name":"2021 33rd Chinese Control and Decision Conference (CCDC)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 33rd Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC52312.2021.9601379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we deal with anatomical landmark localization as a heatmap regression problem. Based on this, we introduce a lightweight architecture to simultaneously localize fovea and optic disc (OD). Additionally, considering that directly attaching argmax to the output layer can lead to confidence map offsets errors, we propose a centroid clustering algorithm to address this issue. Extensive experiments are constructed on the IDRiD dataset, confirming the superiority of the proposed method. In particular, the Euclidean errors on fovea and OD are 45.034 and 21.101 (in pixels), respectively, which exceeds the other competitors of IDRiD Challenge 2018 by a large margin. Furthermore, at a resolution of $420\times 356$ the 90ms inference speed of a single image is conducive to large-scale clinical diagnosis.
基于解剖约束和热图回归的视盘和中央凹定位
在本文中,我们将解剖地标定位作为一个热图回归问题来处理。在此基础上,我们引入了一种轻量级的结构来同时定位中央凹和视盘(OD)。此外,考虑到直接将argmax附加到输出层可能导致置信度图偏移误差,我们提出了一种质心聚类算法来解决这个问题。在IDRiD数据集上进行了大量的实验,验证了该方法的优越性。特别是在中央凹和外径上的欧氏误差分别为45.034和21.101(像素),大大超过了IDRiD挑战赛2018的其他竞争对手。此外,在420 × 356的分辨率下,单幅图像的90ms推理速度有利于大规模临床诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信