Hao Zhang, Linxiao Shen, Shichuang Zhang, Heyi Li, Yihan Zhang, Z. Tan, R. Huang, Le Ye
{"title":"A 77μW 115dB-Dynamic-Range 586fA-Sensitivity Current-Domain Continuous-Time Zoom ADC with Pulse-Width-Modulated Resistor DAC and Background Offset Compensation Scheme","authors":"Hao Zhang, Linxiao Shen, Shichuang Zhang, Heyi Li, Yihan Zhang, Z. Tan, R. Huang, Le Ye","doi":"10.1109/CICC53496.2022.9772794","DOIUrl":null,"url":null,"abstract":"High-precision large dynamic-range (DR) current-sensing front-ends are widely used in biomedical applications, such as patch-clamp, molecular concentration detection, and gene sequencing. The new gene sequencers require low-noise analog front-ends capable of sensing large DR current (>100 dB) down to sub-pA-level. At this level of precision, oversampled data converters are usually used. However, given the limited oversampling ratio in high throughput applications, it is very challenging to achieve a sub-pA-level sensitivity and >100dB DR within the limited area and energy budgets [1]. In [2], a 140dB DR is achieved using a multi-bit delta-sigma modulator (DSM), but the power consumption is over 1mW and the current sensitivity is limited to 6.3pA. An hourglass ADC achieving a 100fA sensitivity and 140dB DR is presented in [3], but is limited by conversion rate and relatively high power consumption (295μW). For a 100Hz bandwidth, its noise floor increases to 18pA.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
High-precision large dynamic-range (DR) current-sensing front-ends are widely used in biomedical applications, such as patch-clamp, molecular concentration detection, and gene sequencing. The new gene sequencers require low-noise analog front-ends capable of sensing large DR current (>100 dB) down to sub-pA-level. At this level of precision, oversampled data converters are usually used. However, given the limited oversampling ratio in high throughput applications, it is very challenging to achieve a sub-pA-level sensitivity and >100dB DR within the limited area and energy budgets [1]. In [2], a 140dB DR is achieved using a multi-bit delta-sigma modulator (DSM), but the power consumption is over 1mW and the current sensitivity is limited to 6.3pA. An hourglass ADC achieving a 100fA sensitivity and 140dB DR is presented in [3], but is limited by conversion rate and relatively high power consumption (295μW). For a 100Hz bandwidth, its noise floor increases to 18pA.