On the structure of certain $\Gamma$-difference modules

E. D. Shalit, J. Guti'errez
{"title":"On the structure of certain $\\Gamma$-difference modules","authors":"E. D. Shalit, J. Guti'errez","doi":"10.4171/lem/1032","DOIUrl":null,"url":null,"abstract":"This is a largely expository paper, providing a self-contained account on the results of [Sch-Si1, Sch-Si2], in the cases denoted there 2Q and 2M. These papers of Schäfke and Singer supplied new proofs to the main theorems of [Bez-Bou, Ad-Be], on the rationality of power series satisfying a pair of independent q-difference, or Mahler, equations. We emphasize the language of Γ-difference modules, instead of difference equations or systems. Although in the two cases mentioned above this is only a semantic change, we also treat a new case, which may be labeled 1M1Q. Here the group Γ is generalized dihedral rather than abelian, and the language of equations is inadequate. In the last section we explain how to generalize the main theorems in case 2Q to finite characteristic.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This is a largely expository paper, providing a self-contained account on the results of [Sch-Si1, Sch-Si2], in the cases denoted there 2Q and 2M. These papers of Schäfke and Singer supplied new proofs to the main theorems of [Bez-Bou, Ad-Be], on the rationality of power series satisfying a pair of independent q-difference, or Mahler, equations. We emphasize the language of Γ-difference modules, instead of difference equations or systems. Although in the two cases mentioned above this is only a semantic change, we also treat a new case, which may be labeled 1M1Q. Here the group Γ is generalized dihedral rather than abelian, and the language of equations is inadequate. In the last section we explain how to generalize the main theorems in case 2Q to finite characteristic.
关于某些$\Gamma$-差分模块的结构
这是一篇很大程度上说明性的论文,在2Q和2M的情况下,对[Sch-Si1, Sch-Si2]的结果提供了一个独立的说明。Schäfke和Singer的这些论文对[Bez-Bou, Ad-Be]中关于幂级数满足一对独立的q-差分或马勒方程的合理性的主要定理提供了新的证明。我们强调Γ-difference模块的语言,而不是差分方程或系统。尽管在上面提到的两种情况中,这只是语义上的变化,但我们也处理了一个新的情况,它可能被标记为1M1Q。这里的群Γ是广义二面体,而不是阿贝尔,方程的语言是不充分的。在最后一节中,我们解释了如何将情形2Q的主要定理推广到有限特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信