A data parallel view on polyhedral process networks

A. Balevic, B. Kienhuis
{"title":"A data parallel view on polyhedral process networks","authors":"A. Balevic, B. Kienhuis","doi":"10.1145/1988932.1988939","DOIUrl":null,"url":null,"abstract":"Emerging architectures in embedded space are expected to make use of a diverse mix of multicorcs, vector-based units, GPU cores and special function accelerators. In order to facilitate mapping onto diverse architectures, different models of computation have been considered. Polyhedral Process Networks (PPNs) have been extensively used in automatic generation of task and pipeline parallel programs for embedded architectures. However, the single program multiple data (SPMD) type of data parallelism has not been addressed in the PPN model. In this paper, we propose a Data Parallel View (DPV) on PPNs which introduces abstractions necessary for capturing and exploiting data parallelism on top of the PPN model. As a proof of concept, we demonstrate how a PPN can be mapped onto a modern GPU using the DPV. By complementing the native PPN support for task and pipeline parallelism with the DPV support for data parallelism, we expect to make the best use of different types of architectural components and types of parallelism on heterogeneous architectures.","PeriodicalId":375451,"journal":{"name":"Software and Compilers for Embedded Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1988932.1988939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Emerging architectures in embedded space are expected to make use of a diverse mix of multicorcs, vector-based units, GPU cores and special function accelerators. In order to facilitate mapping onto diverse architectures, different models of computation have been considered. Polyhedral Process Networks (PPNs) have been extensively used in automatic generation of task and pipeline parallel programs for embedded architectures. However, the single program multiple data (SPMD) type of data parallelism has not been addressed in the PPN model. In this paper, we propose a Data Parallel View (DPV) on PPNs which introduces abstractions necessary for capturing and exploiting data parallelism on top of the PPN model. As a proof of concept, we demonstrate how a PPN can be mapped onto a modern GPU using the DPV. By complementing the native PPN support for task and pipeline parallelism with the DPV support for data parallelism, we expect to make the best use of different types of architectural components and types of parallelism on heterogeneous architectures.
多面体过程网络的数据并行视图
嵌入式领域的新兴架构预计将利用多核、基于矢量的单元、GPU内核和特殊功能加速器的多种组合。为了方便映射到不同的体系结构,考虑了不同的计算模型。多面体进程网络(PPNs)广泛应用于嵌入式系统中任务和流水线并行程序的自动生成。然而,单程序多数据(SPMD)类型的数据并行性在PPN模型中尚未得到解决。在本文中,我们提出了一个PPN的数据并行视图(DPV),它在PPN模型之上引入了捕获和利用数据并行性所必需的抽象。作为概念证明,我们演示了如何使用DPV将PPN映射到现代GPU上。通过将原生PPN对任务和管道并行性的支持与DPV对数据并行性的支持相补充,我们期望在异构体系结构上充分利用不同类型的体系结构组件和并行性类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信