Effective medium of periodic fluid-solid composites

Jun Mei, Ying Wu, Zhengyou Liu
{"title":"Effective medium of periodic fluid-solid composites","authors":"Jun Mei, Ying Wu, Zhengyou Liu","doi":"10.1209/0295-5075/98/54001","DOIUrl":null,"url":null,"abstract":"An analytic solution of the effective mass density and bulk modulus of a periodic fluid-solid composite is obtained by using the multiple-scattering theory in the long-wavelength limit. It is shown that when the concentration of solid inclusions is high, the effective mass density is structure dependent and differs significantly from the leading-order dipole solution, whereas Wood's formula is accurately valid, independently of the structures. Numerical evaluations from the analytic solution are shown to be in excellent agreement with finite-element simulations. In the vicinity of the tight-packing limit, the critical behavior of the effective mass density is also studied and it is independent of the lattice symmetry.","PeriodicalId":171520,"journal":{"name":"EPL (Europhysics Letters)","volume":"86 1-2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL (Europhysics Letters)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/98/54001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

An analytic solution of the effective mass density and bulk modulus of a periodic fluid-solid composite is obtained by using the multiple-scattering theory in the long-wavelength limit. It is shown that when the concentration of solid inclusions is high, the effective mass density is structure dependent and differs significantly from the leading-order dipole solution, whereas Wood's formula is accurately valid, independently of the structures. Numerical evaluations from the analytic solution are shown to be in excellent agreement with finite-element simulations. In the vicinity of the tight-packing limit, the critical behavior of the effective mass density is also studied and it is independent of the lattice symmetry.
周期性流固复合材料的有效介质
利用长波长极限下的多重散射理论,得到了周期流固复合材料的有效质量密度和体积模量的解析解。结果表明,当固体夹杂物浓度较高时,有效质量密度与结构相关,且与主偶极子溶液显著不同,而Wood公式与结构无关,是准确有效的。解析解的数值计算结果与有限元模拟结果非常吻合。在紧堆积极限附近,研究了有效质量密度的临界行为,它与晶格对称性无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信