The Quasi-Isomorphism Theorem

R. Schwartz
{"title":"The Quasi-Isomorphism Theorem","authors":"R. Schwartz","doi":"10.2307/j.ctv5rf6tz.22","DOIUrl":null,"url":null,"abstract":"This chapter proves the Quasi-Isomorphism Theorem modulo two technical lemmas, which will be dealt with in the next two chapters. Section 18.2 introduces the affine transformation TA from the Quasi-Isomorphism Theorem. Section 18.3 defines the graph grid GA = TA(Z2) and states the Grid Geometry Lemma, a result about the basic geometric properties of GA. Section 18.4 introduces the set Z* that appears in the Renormalization Theorem and states the main result about it, the Intertwining Lemma. Section 18.5 explains how the Orbit Equivalence Theorem sets up a canonical bijection between the nontrivial orbits of the plaid PET and the orbits of the graph PET. Section 18.6 reinterprets the orbit correspondence in terms of the plaid polygons and the arithmetic graph polygons. Everything is then put together to complete the proof of the Quasi-Isomorphism Theorem. Section 18.7 deduces the Projection Theorem (Theorem 0.2) from the Quasi-Isomorphism Theorem.","PeriodicalId":205299,"journal":{"name":"The Plaid Model","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plaid Model","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv5rf6tz.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter proves the Quasi-Isomorphism Theorem modulo two technical lemmas, which will be dealt with in the next two chapters. Section 18.2 introduces the affine transformation TA from the Quasi-Isomorphism Theorem. Section 18.3 defines the graph grid GA = TA(Z2) and states the Grid Geometry Lemma, a result about the basic geometric properties of GA. Section 18.4 introduces the set Z* that appears in the Renormalization Theorem and states the main result about it, the Intertwining Lemma. Section 18.5 explains how the Orbit Equivalence Theorem sets up a canonical bijection between the nontrivial orbits of the plaid PET and the orbits of the graph PET. Section 18.6 reinterprets the orbit correspondence in terms of the plaid polygons and the arithmetic graph polygons. Everything is then put together to complete the proof of the Quasi-Isomorphism Theorem. Section 18.7 deduces the Projection Theorem (Theorem 0.2) from the Quasi-Isomorphism Theorem.
拟同构定理
本章用两个技术引理证明了拟同构定理,这将在接下来的两章中讨论。第18.2节从拟同构定理引入仿射变换TA。第18.3节定义了图网格GA = TA(Z2),并给出了网格几何引理,这是关于GA基本几何性质的一个结果。第18.4节介绍了重整化定理中出现的集合Z*,并陈述了关于它的主要结果——缠结引理。第18.5节解释了轨道等价定理如何在格子PET的非平凡轨道和图PET的轨道之间建立一个正则双射。第18.6节用格子多边形和算术图多边形重新解释了轨道对应关系。然后把所有的东西放在一起来完成拟同构定理的证明。第18.7节从拟同构定理推导出投影定理(定理0.2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信