Image Processing Technology to Determine the Parameters of the Internal Structure of Composite Materials

M. Shapovalova, O. Vodka
{"title":"Image Processing Technology to Determine the Parameters of the Internal Structure of Composite Materials","authors":"M. Shapovalova, O. Vodka","doi":"10.1109/KhPIWeek53812.2021.9570099","DOIUrl":null,"url":null,"abstract":"Automated intelligent decision-making systems, working with the use of mathematical methods of data processing, can reduce the influence of the human factor in the analysis, reduce the time spent on research, improve the accuracy and reliability of the results. They help automate the quality control process and enable association material properties to its microstructure. Numerical and experimental studies of the material microstructure can be implemented using hybrid methods with the introduction of computer simulation methods. The paper proposes to use the OpenCV technology for image analysis of cast iron with spherical graphite inclusions, followed by classification of the recognized material. The optimal parameters of image preprocessing and edge recognition are set. The result of the presented work is the distribution function of inclusions depending on their concentration on the plane.","PeriodicalId":365896,"journal":{"name":"2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KhPIWeek53812.2021.9570099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automated intelligent decision-making systems, working with the use of mathematical methods of data processing, can reduce the influence of the human factor in the analysis, reduce the time spent on research, improve the accuracy and reliability of the results. They help automate the quality control process and enable association material properties to its microstructure. Numerical and experimental studies of the material microstructure can be implemented using hybrid methods with the introduction of computer simulation methods. The paper proposes to use the OpenCV technology for image analysis of cast iron with spherical graphite inclusions, followed by classification of the recognized material. The optimal parameters of image preprocessing and edge recognition are set. The result of the presented work is the distribution function of inclusions depending on their concentration on the plane.
确定复合材料内部结构参数的图像处理技术
自动化智能决策系统,配合使用数学方法对数据进行处理,可以减少分析中人为因素的影响,减少花在研究上的时间,提高结果的准确性和可靠性。它们有助于自动化质量控制过程,并使材料性能与其微观结构相关联。材料微观结构的数值和实验研究可以采用计算机模拟方法的混合方法来实现。本文提出利用OpenCV技术对含球状石墨夹杂的铸铁进行图像分析,并对识别出的材料进行分类。确定了图像预处理和边缘识别的最优参数。所提出的工作的结果是包裹体的分布函数取决于它们在平面上的浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信