{"title":"Dual contouring of hermite data","authors":"T. Ju, Frank Losasso, S. Schaefer, J. Warren","doi":"10.1145/566570.566586","DOIUrl":null,"url":null,"abstract":"This paper describes a new method for contouring a signed grid whose edges are tagged by Hermite data (i.e; exact intersection points and normals). This method avoids the need to explicitly identify and process \"features\" as required in previous Hermite contouring methods. Using a new, numerically stable representation for quadratic error functions, we develop an octree-based method for simplifying contours produced by this method. We next extend our contouring method to these simpli£ed octrees. This new method imposes no constraints on the octree (such as being a restricted octree) and requires no \"crack patching\". We conclude with a simple test for preserving the topology of the contour during simplification.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"722","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/566570.566586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 722
Abstract
This paper describes a new method for contouring a signed grid whose edges are tagged by Hermite data (i.e; exact intersection points and normals). This method avoids the need to explicitly identify and process "features" as required in previous Hermite contouring methods. Using a new, numerically stable representation for quadratic error functions, we develop an octree-based method for simplifying contours produced by this method. We next extend our contouring method to these simpli£ed octrees. This new method imposes no constraints on the octree (such as being a restricted octree) and requires no "crack patching". We conclude with a simple test for preserving the topology of the contour during simplification.