Semantic based knowledge representation and adaptive mission planning for MCM missions using AUVs

G. Papadimitriou, D. Lane
{"title":"Semantic based knowledge representation and adaptive mission planning for MCM missions using AUVs","authors":"G. Papadimitriou, D. Lane","doi":"10.1109/OCEANS-TAIPEI.2014.6964477","DOIUrl":null,"url":null,"abstract":"Mine Countermeasures (MCM) are a substantial challenge in the domain of underwater operations especially when using Autonomous Underwater Vehicles (AUVs). The work presented in this paper focuses on the semantic representation of knowledge and its utilization for mission planning and plan adaptation in a simulated MCM environment using the Nessie AUV. With respect to semantic knowledge representation this work builds upon the KnowRob system. Various ontologies model the environment, the AUV components and capabilities as well as the planning domain. For planning and plan adaptation we use the POPF Planning Domain Definition Language (PDDL) planner. Plan adaptation reuses previous plans when calculating a new plan thus saving computational resources. The main contribution of this work is an approach that relies on semantic information to represent knowledge in a MCM context and its usage for planning MCM missions in an energy efficient manner.","PeriodicalId":114739,"journal":{"name":"OCEANS 2014 - TAIPEI","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2014 - TAIPEI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS-TAIPEI.2014.6964477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Mine Countermeasures (MCM) are a substantial challenge in the domain of underwater operations especially when using Autonomous Underwater Vehicles (AUVs). The work presented in this paper focuses on the semantic representation of knowledge and its utilization for mission planning and plan adaptation in a simulated MCM environment using the Nessie AUV. With respect to semantic knowledge representation this work builds upon the KnowRob system. Various ontologies model the environment, the AUV components and capabilities as well as the planning domain. For planning and plan adaptation we use the POPF Planning Domain Definition Language (PDDL) planner. Plan adaptation reuses previous plans when calculating a new plan thus saving computational resources. The main contribution of this work is an approach that relies on semantic information to represent knowledge in a MCM context and its usage for planning MCM missions in an energy efficient manner.
基于语义的auv MCM任务知识表示与自适应任务规划
水雷对抗(MCM)是水下作战领域的一个重大挑战,特别是在使用自主水下航行器(auv)时。本文主要研究了尼斯湖水怪水下航行器模拟MCM环境中知识的语义表示及其在任务规划和计划适应中的应用。在语义知识表示方面,这项工作建立在KnowRob系统的基础上。各种本体对环境、AUV组件和功能以及规划域进行建模。对于规划和计划适应,我们使用POPF规划域定义语言(PDDL)规划器。计划自适应在计算新计划时重用以前的计划,从而节省计算资源。这项工作的主要贡献是一种依赖语义信息来表示MCM上下文中的知识的方法,并以节能的方式将其用于规划MCM任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信