The prediction of bankruptcy using fuzzy classifiers

R. Nogueira, S. Vieira, J. Sousa
{"title":"The prediction of bankruptcy using fuzzy classifiers","authors":"R. Nogueira, S. Vieira, J. Sousa","doi":"10.1109/CIMA.2005.1662315","DOIUrl":null,"url":null,"abstract":"Real-world databases are highly susceptible to noisy, missing, and inconsistent data due to their typically huge size, which is a prevailing problem in data analysis. The easiest way to handle such data sets in classification is to discard data with missing and extreme values. Since this complete case approach may result in a loss of valuable information and reduced data set size, preprocessing techniques are used in this paper. These techniques include data cleaning, data transformations and data reduction. A new feature selection for data reduction is introduced, which uses the fast fuzzy clustering algorithm in classification problems. The experiments show the advantages of the proposed methods for data preprocessing in a real world problem: the prediction of bankruptcy. The data set used in this study has missing values and extreme values. The data set also presents a much smaller bankruptcy class than the not bankruptcy class","PeriodicalId":306045,"journal":{"name":"2005 ICSC Congress on Computational Intelligence Methods and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 ICSC Congress on Computational Intelligence Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMA.2005.1662315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Real-world databases are highly susceptible to noisy, missing, and inconsistent data due to their typically huge size, which is a prevailing problem in data analysis. The easiest way to handle such data sets in classification is to discard data with missing and extreme values. Since this complete case approach may result in a loss of valuable information and reduced data set size, preprocessing techniques are used in this paper. These techniques include data cleaning, data transformations and data reduction. A new feature selection for data reduction is introduced, which uses the fast fuzzy clustering algorithm in classification problems. The experiments show the advantages of the proposed methods for data preprocessing in a real world problem: the prediction of bankruptcy. The data set used in this study has missing values and extreme values. The data set also presents a much smaller bankruptcy class than the not bankruptcy class
破产预测的模糊分类器
现实世界的数据库由于其典型的巨大规模,非常容易受到噪声、缺失和不一致数据的影响,这是数据分析中的一个普遍问题。在分类中处理此类数据集的最简单方法是丢弃具有缺失值和极值的数据。由于这种完整的案例方法可能会导致有价值信息的丢失和数据集大小的减小,因此本文使用了预处理技术。这些技术包括数据清理、数据转换和数据约简。介绍了一种新的数据约简特征选择方法,将快速模糊聚类算法应用于分类问题。实验表明,所提出的数据预处理方法在预测破产这一现实问题中的优势。本研究使用的数据集存在缺失值和极值。数据集还显示,破产类别比非破产类别要小得多
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信