A Document Classification System Using Modified ECCD and Category Weight for each Document

Chungseok Han, Sang-Yong Park, Soowon Lee
{"title":"A Document Classification System Using Modified ECCD and Category Weight for each Document","authors":"Chungseok Han, Sang-Yong Park, Soowon Lee","doi":"10.3745/KIPSTB.2012.19B.4.237","DOIUrl":null,"url":null,"abstract":"Web information service needs a document classification system for efficient management and conveniently searches. Existing document classification systems have a problem of low accuracy in classification, if a few number of feature words is selected in documents or if the number of documents that belong to a specific category is excessively large. To solve this problem, we propose a document classification system using `Modified ECCD` feature selection method and `Category Weight for each Document`. Experimental results show that the `Modified ECCD` feature selection method has higher accuracy in classification than and the ECCD method. Moreover, combining the `Category Weight for each Document` feature value and `Modified ECCD` feature selection method results better accuracy in classification.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2012.19B.4.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Web information service needs a document classification system for efficient management and conveniently searches. Existing document classification systems have a problem of low accuracy in classification, if a few number of feature words is selected in documents or if the number of documents that belong to a specific category is excessively large. To solve this problem, we propose a document classification system using `Modified ECCD` feature selection method and `Category Weight for each Document`. Experimental results show that the `Modified ECCD` feature selection method has higher accuracy in classification than and the ECCD method. Moreover, combining the `Category Weight for each Document` feature value and `Modified ECCD` feature selection method results better accuracy in classification.
一种基于改进ECCD和类别权重的文档分类系统
Web信息服务需要一个文档分类系统来实现高效的管理和方便的检索。现有的文档分类系统存在分类准确率低的问题,如果在文档中选择的特征词数量很少,或者属于特定类别的文档数量过大。为了解决这一问题,我们提出了一种使用“改进ECCD”特征选择方法和“每个文档的类别权重”的文档分类系统。实验结果表明,“改进的ECCD”特征选择方法在分类上具有更高的准确率。此外,将“每个文档的类别权重”特征值与“改进的ECCD”特征选择方法相结合,可以提高分类的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信