A fire color mapping-based segmentation: Fire pixel segmentation approach

Bruno Miguel Nogueira de Souza, J. Facon
{"title":"A fire color mapping-based segmentation: Fire pixel segmentation approach","authors":"Bruno Miguel Nogueira de Souza, J. Facon","doi":"10.1109/AICCSA.2016.7945741","DOIUrl":null,"url":null,"abstract":"Fire detection is a very important task to save human lives and ecological systems. On literature, several fire detection methods use a color mapping function to help on detection process. In this context, we propose a new method based on fire probabilistic color mapping. Using Entropy rules was possible to improve the metric rates. We also numerically evaluate the quality of published fire segmentation techniques and the new one using some segmentation metrics onto two datasets: one for training and test with 226 images and second with 110 images for test. With better performance than compared methods in True Positive (81.33%), Accuracy (89.90%), F-Measure (82.58%) and True Negative rates for not-fire images (98.16%), the results show that our proposed method is more accurate for extracting fire region, indicating the effectiveness contribution of our fire probabilistic color mapping using entropy.","PeriodicalId":448329,"journal":{"name":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2016.7945741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Fire detection is a very important task to save human lives and ecological systems. On literature, several fire detection methods use a color mapping function to help on detection process. In this context, we propose a new method based on fire probabilistic color mapping. Using Entropy rules was possible to improve the metric rates. We also numerically evaluate the quality of published fire segmentation techniques and the new one using some segmentation metrics onto two datasets: one for training and test with 226 images and second with 110 images for test. With better performance than compared methods in True Positive (81.33%), Accuracy (89.90%), F-Measure (82.58%) and True Negative rates for not-fire images (98.16%), the results show that our proposed method is more accurate for extracting fire region, indicating the effectiveness contribution of our fire probabilistic color mapping using entropy.
一种基于火种颜色映射的分割方法:火种像素分割方法
火灾探测是拯救人类生命和生态系统的一项非常重要的任务。在文献中,几种火灾探测方法使用颜色映射功能来帮助探测过程。在此背景下,我们提出了一种基于概率颜色映射的新方法。使用熵规则可以提高度量率。我们还在两个数据集上使用一些分割指标对已发表的火焰分割技术和新技术的质量进行了数值评估:一个用于226张图像的训练和测试,另一个用于110张图像的测试。结果表明,该方法在火灾区域提取上的准确率(81.33%)、准确率(89.90%)、F-Measure准确率(82.58%)和True Negative准确率(98.16%)均优于其他方法,表明了基于熵的火灾概率颜色映射的有效性贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信