SLTP: A Fast Descriptor for People Detection in Depth Images

Shiqi Yu, Shengyin Wu, Liang Wang
{"title":"SLTP: A Fast Descriptor for People Detection in Depth Images","authors":"Shiqi Yu, Shengyin Wu, Liang Wang","doi":"10.1109/AVSS.2012.67","DOIUrl":null,"url":null,"abstract":"This paper presents a new feature descriptor for real-time people detection in depth images. The shape cue in depth images can reduce negative impacts of variations of clothing, lighting conditions and the complexity of backgrounds. The proposed Simplified Local Ternary Patterns (SLTP) can take advantage of depth images to describe human body shape with low computational cost. To evaluate the SLTP feature, we establish a dataset with 7260 positive samples. A series of experiments are carried out on this dataset, and the results show that the SLTP feature can achieve a high detection rate with a low false positive rate. Besides, SLTP is easy to implement, and performs fast (over 80 frames per second) on a standard desktop computer.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"425 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents a new feature descriptor for real-time people detection in depth images. The shape cue in depth images can reduce negative impacts of variations of clothing, lighting conditions and the complexity of backgrounds. The proposed Simplified Local Ternary Patterns (SLTP) can take advantage of depth images to describe human body shape with low computational cost. To evaluate the SLTP feature, we establish a dataset with 7260 positive samples. A series of experiments are carried out on this dataset, and the results show that the SLTP feature can achieve a high detection rate with a low false positive rate. Besides, SLTP is easy to implement, and performs fast (over 80 frames per second) on a standard desktop computer.
SLTP:深度图像中人检测的快速描述符
提出了一种新的用于深度图像实时人物检测的特征描述符。深度图像中的形状线索可以减少服装变化、光照条件和背景复杂性的负面影响。所提出的简化局部三元模式(SLTP)可以利用深度图像来描述人体形状,且计算成本低。为了评估SLTP特征,我们建立了一个包含7260个阳性样本的数据集。在该数据集上进行了一系列实验,结果表明,SLTP特征可以实现高的检测率和低的误报率。此外,SLTP易于实现,并且在标准桌面计算机上执行速度很快(每秒超过80帧)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信