Evaluating Tag Recommender Algorithms in Real-World Folksonomies: A Comparative Study

Dominik Kowald, E. Lex
{"title":"Evaluating Tag Recommender Algorithms in Real-World Folksonomies: A Comparative Study","authors":"Dominik Kowald, E. Lex","doi":"10.1145/2792838.2799664","DOIUrl":null,"url":null,"abstract":"To date, the evaluation of tag recommender algorithms has mostly been conducted in limited ways, including p-core pruned datasets, a small set of compared algorithms and solely based on recommender accuracy. In this study, we use an open-source evaluation framework to compare a rich set of state-of-the-art algorithms in six unfiltered, open datasets via various metrics, measuring not only accuracy but also the diversity, novelty and computational costs of the approaches. We therefore provide a transparent and reproducible tag recommender evaluation in real-world folksonomies. Our results suggest that the efficacy of an algorithm highly depends on the given needs and thus, they should be of interest to both researchers and developers in the field of tag-based recommender systems.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2799664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

To date, the evaluation of tag recommender algorithms has mostly been conducted in limited ways, including p-core pruned datasets, a small set of compared algorithms and solely based on recommender accuracy. In this study, we use an open-source evaluation framework to compare a rich set of state-of-the-art algorithms in six unfiltered, open datasets via various metrics, measuring not only accuracy but also the diversity, novelty and computational costs of the approaches. We therefore provide a transparent and reproducible tag recommender evaluation in real-world folksonomies. Our results suggest that the efficacy of an algorithm highly depends on the given needs and thus, they should be of interest to both researchers and developers in the field of tag-based recommender systems.
评价标签推荐算法在现实世界的大众分类法:比较研究
到目前为止,对标签推荐算法的评估大多是在有限的方式下进行的,包括p核修剪数据集,一小部分比较算法,以及仅仅基于推荐的准确性。在这项研究中,我们使用一个开源评估框架,通过各种指标来比较六个未经过滤的开放数据集中丰富的一组最先进的算法,不仅衡量准确性,还衡量方法的多样性、新颖性和计算成本。因此,我们在现实世界的大众分类法中提供了一个透明和可重复的标签推荐评估。我们的研究结果表明,算法的有效性高度依赖于给定的需求,因此,它们应该引起基于标签的推荐系统领域的研究人员和开发人员的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信