Using Particle Swarm Optimization, Genetic Algorithm, Honey Bee mating Optimization and Shuffle Frog Leaping Algorithm for solving OPF Problem with their Comparison

S. Ahmadnia, Ehsan Tafehi
{"title":"Using Particle Swarm Optimization, Genetic Algorithm, Honey Bee mating Optimization and Shuffle Frog Leaping Algorithm for solving OPF Problem with their Comparison","authors":"S. Ahmadnia, Ehsan Tafehi","doi":"10.11591/IJEECS.V15.I3.PP445-451","DOIUrl":null,"url":null,"abstract":"Today using evolutionary programing for solving complex, nonlinear mathematical problems like optimum power flow is commonly in use. These types of problems are naturally nonlinear and the conventional mathematical methods aren’t powerful enough for achieving the desirable results. In this study an Optimum Power Flow problem solved by means of minimization of fuel costs for IEEE 30 buses test system by Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Honey Bee Mating Optimization (HBMO) and Shuffle Frog Leaping Algorithm (SFLA), these algorithms has been used in MATLAB medium with help of MATHPOWER to achieving more precise results and comparing these results with the other proposed results in other published papers.","PeriodicalId":247642,"journal":{"name":"TELKOMNIKA Indonesian Journal of Electrical Engineering","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELKOMNIKA Indonesian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJEECS.V15.I3.PP445-451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Today using evolutionary programing for solving complex, nonlinear mathematical problems like optimum power flow is commonly in use. These types of problems are naturally nonlinear and the conventional mathematical methods aren’t powerful enough for achieving the desirable results. In this study an Optimum Power Flow problem solved by means of minimization of fuel costs for IEEE 30 buses test system by Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Honey Bee Mating Optimization (HBMO) and Shuffle Frog Leaping Algorithm (SFLA), these algorithms has been used in MATLAB medium with help of MATHPOWER to achieving more precise results and comparing these results with the other proposed results in other published papers.
采用粒子群算法、遗传算法、蜜蜂交配优化和洗牌蛙跳跃算法求解OPF问题,并对它们进行了比较
今天,进化规划被广泛用于解决复杂的非线性数学问题,如最优潮流。这些类型的问题自然是非线性的,传统的数学方法不足以达到理想的结果。本文采用粒子群算法(PSO)、遗传算法(GA)、蜜蜂交配优化算法(HBMO)和Shuffle Frog跳跃算法(SFLA)对IEEE 30客车测试系统中以燃料成本最小化为目的的最优潮流问题进行了研究,并在MATLAB中使用了这些算法,借助MATHPOWER得到了更精确的结果,并将这些结果与其他已发表的论文中提出的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信